Cell biology of vasopressin-regulated aquaporin-2 trafficking.

Pflugers Arch

Department of Biomedicine and Center for Interactions of Proteins in Epithelial Transport (InterPrET), Aarhus University, Bldg. 1233 Wilhelm Meyers Alle, Aarhus, 8000, Denmark.

Published: August 2012

Whole-body water balance is predominantly controlled by the kidneys, which have the ability to concentrate or dilute the urine in the face of altered fluid and solute intake. Regulated water excretion is controlled by various hormones and signaling molecules, with the antidiuretic hormone arginine vasopressin (AVP) playing an essential role, predominantly via its modulatory effects on the function of the water channel aquaporin-2 (AQP2). The clinical conditions, central and nephrogenic diabetes insipidus, emphasize the importance of the AVP-AQP2 axis. In this article, we summarize the most important and recent studies on AVP-regulated trafficking of AQP2, with focus on the cellular components mediating (1) AQP2 vesicle targeting to the principal cell apical plasma membrane, (2) docking and fusion of AQP2-containing vesicles, (3) regulated removal of AQP2 from the plasma membrane, and (4) posttranslational modifications of AQP2 that control several of these processes. Insight into the molecular mechanisms responsible for regulated AQP2 trafficking is proving to be fundamental for development of novel therapies for water balance disorders.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00424-012-1129-4DOI Listing

Publication Analysis

Top Keywords

water balance
8
plasma membrane
8
aqp2
6
cell biology
4
biology vasopressin-regulated
4
vasopressin-regulated aquaporin-2
4
aquaporin-2 trafficking
4
trafficking whole-body
4
water
4
whole-body water
4

Similar Publications

Interoception broadly refers to awareness of one's internal milieu. Although the importance of the body-to-brain communication that underlies interoception is implicit, the vagal afferent signalling and corresponding brain circuits that shape perception of the viscera are not entirely clear. Here, we use mice to parse neural circuits subserving interoception of the heart and gut.

View Article and Find Full Text PDF

Throughout the last centuries, European climate changed substantially, which affected the potential to plant and grow crops. These changes happened not just over time but also had a spatial dimension. Yet, despite large climatic fluctuations, quantitative historical studies typically rely on static measures for agricultural suitability due to the non-availability of time-varying indices.

View Article and Find Full Text PDF

Background Heart failure (HF) is commonly managed by addressing water and sodium (Na) balance, with arterial circulation playing a major role in influencing renal Na and water excretion. Recently, chloride (Cl) has been recognized as an important factor in HF, associated with volume regulation and its modulation of renin-angiotensin-aldosterone system (RAAS) activity through macula densa signaling, which impacts Na retention and neurohormonal activation. Acetazolamide, a carbonic anhydrase inhibitor, can enhance decongestion in HF by increasing urinary Na and Cl excretion when added to loop diuretics, a mechanism supported by prior studies demonstrating improved urine output and decongestion.

View Article and Find Full Text PDF

Rationale: Extraterrestrial amines and ammonia are critical ingredients for the formation of astrobiologically important compounds such as amino acids and nucleobases. However, conventional methods for analyzing the composition and isotopic ratios of volatile amines suffer from lengthy derivatization and purification procedures, high sample mass consumption, and chromatographic interferences from derivatization reagents and non-target compounds.

Methods: Here we demonstrate a highly efficient method to analyze the composition and compound specific isotopic ratios of C to C amines as well as ammonia based on solid phase micro-extraction (SPME) on-fiber derivatization.

View Article and Find Full Text PDF

Integrated system for electrolyte recovery, product separation, and CO capture in CO reduction.

Nat Commun

January 2025

School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, South China University of Technology, Guangzhou, 510006, China.

Challenges in CO capture, CO crossover, product separation, and electrolyte recovery hinder electrocatalytic CO reduction (COR). Here, we present an integrated electrochemical recovery and separation system (ERSS) with an ion separation module (ISM) between the anode and cathode of a water electrolysis system. During ERSS operation, protons from the anolyte flow through the anodic cation exchange membrane (CEM) into the ISM, acidifying the COR effluent electrolyte.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!