Human Cockayne syndrome B protein reciprocally communicates with mitochondrial proteins and promotes transcriptional elongation.

Nucleic Acids Res

Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA.

Published: September 2012

Cockayne syndrome (CS) is a rare human disorder characterized by pathologies of premature aging, neurological abnormalities, sensorineural hearing loss and cachectic dwarfism. With recent data identifying CS proteins as physical components of mitochondria, we sought to identify protein partners and roles for Cockayne syndrome group B (CSB) protein in this organelle. CSB was found to physically interact with and modulate the DNA-binding activity of the major mitochondrial nucleoid, DNA replication and transcription protein TFAM. Components of the mitochondrial transcription apparatus (mitochondrial RNA polymerase, transcription factor 2B and TFAM) all functionally interacted with CSB and stimulated its double-stranded DNA-dependent adenosine triphosphatase activity. Moreover, we found that patient-derived CSB-deficient cells exhibited a defect in efficient mitochondrial transcript production and that CSB specifically promoted elongation by the mitochondrial RNA polymerase in vitro. These observations provide strong evidence for the importance of CSB in maintaining mitochondrial function and argue that the pathologies associated with CS are in part, a direct result of the roles that CSB plays in mitochondria.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3458532PMC
http://dx.doi.org/10.1093/nar/gks565DOI Listing

Publication Analysis

Top Keywords

cockayne syndrome
12
mitochondrial rna
8
rna polymerase
8
mitochondrial
7
csb
6
human cockayne
4
protein
4
syndrome protein
4
protein reciprocally
4
reciprocally communicates
4

Similar Publications

Natural aging and age-related diseases involve the acceleration of replicative aging, or senescence. Multiple proteins are known to participate in these processes, including the promyelocytic leukemia (PML) protein, which serves as a core component of nuclear-membrane-less organelles known as PML nuclear bodies (PML-NBs). In this work, morphological changes in PML-NBs and alterations in PML protein localization at the transition of primary fibroblasts to a replicative senescent state were studied by immunofluorescence.

View Article and Find Full Text PDF

Syndromic Retinitis Pigmentosa.

Prog Retin Eye Res

December 2024

Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands; Department of Ophthalmology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands.

Retinitis pigmentosa (RP) is a progressive inherited retinal dystrophy, characterized by the degeneration of photoreceptors, presenting as a rod-cone dystrophy. Approximately 20-30% of patients with RP also exhibit extra-ocular manifestations in the context of a syndrome. This manuscript discusses the broad spectrum of syndromes associated with RP, pathogenic mechanisms, clinical manifestations, differential diagnoses, clinical management approaches, and future perspectives.

View Article and Find Full Text PDF

The Hashimoto Research Group for Comprehensive Research of Gene Mutation-related Rare and Intractable Diseases of the Skin is a contributor to the Project for Research on Intractable Diseases of the Ministry of Health, Labor, and Welfare (MHLW) of Japan. Our research group performs clinical research on 23 rare intractable genetic skin diseases that are classified into eight disease groups. Among the 23 diseases, 17 are mainly studied by our research group, and 6 diseases are studied in collaboration with other research groups.

View Article and Find Full Text PDF

Transcription-coupled repair - mechanisms of action, regulation, and associated human disorders.

FEBS Lett

January 2025

Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan.

The transcription-coupled repair (TCR) pathway resolves transcription-blocking DNA lesions to maintain cellular function and prevent transcriptional arrest. Stalled RNA polymerase II (RNAPII) triggers repair mechanisms, including RNAPII ubiquitination, which recruit UVSSA and TFIIH. Defects in TCR-associated genes cause disorders like Cockayne syndrome, UV-sensitive syndrome, xeroderma pigmentosum, and recently defined AMeDS.

View Article and Find Full Text PDF

Brain organoids offer unprecedented insights into brain development and disease modeling and hold promise for drug screening. Significant hindrances, however, are morphological and cellular heterogeneity, inter-organoid size differences, cellular stress, and poor reproducibility. Here, we describe a method that reproducibly generates thousands of organoids across multiple hiPSC lines.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!