Several studies have sought to test the neurodevelopmental hypothesis of schizophrenia through analysis of cortical gyrification. However, to date, results have been inconsistent. A possible reason for this is that gyrification measures at the centimeter scale may be insensitive to subtle morphological changes at smaller scales. The lack of consistency in such studies may impede further interpretation of cortical morphology as an aid to understanding the etiology of schizophrenia. In this study we developed a new approach, examining whether millimeter-scale measures of cortical curvature are sensitive to changes in fundamental geometric properties of the cortical surface in schizophrenia. We determined and compared millimeter-scale and centimeter-scale curvature in three separate case-control studies; specifically two adult groups and one adolescent group. The datasets were of different sizes, with different ages and gender-spreads. The results clearly show that millimeter-scale intrinsic curvature measures were more robust and consistent in identifying reduced gyrification in patients across all three datasets. To further interpret this finding we quantified the ratio of expansion in the upper and lower cortical layers. The results suggest that reduced gyrification in schizophrenia is driven by a reduction in the expansion of upper cortical layers. This may plausibly be related to a reduction in short-range connectivity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3459091 | PMC |
http://dx.doi.org/10.1016/j.neuroimage.2012.06.034 | DOI Listing |
Soft Matter
January 2025
Institute for X-Ray Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany.
The eukaryotic cytoskeleton is an intricate network of three types of mechanically distinct biopolymers - actin filaments, microtubules and intermediate filaments (IFs). These filamentous networks determine essential cellular functions and properties. Among them, microtubules are important for intracellular transport and establishing cell polarity during migration.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
School of Physics and Electronics, Hunan University, Changsha 410082, China.
Electron-hole exchange interaction in two-dimensional transition metal dichalcogenides is extremely strong due to the dimension reduction, which promises valley-superposed excitonic states with linearly polarized optical emissions. However, strong circular polarization reflecting valley-polarized excitonic states is commonly observed in helicity-resolved optical experiments. Here, we present a non-Hermitian theory of valley excitons by incorporating optical pumping and intrinsic decay, which unveils an anomalous valley-polarized excitonic state with elliptically polarized optical emission.
View Article and Find Full Text PDFJ Math Biol
December 2024
Institute of Analysis and Scientific Computing, TU Wien, Wiedner Hauptstraße 8, 1040, Vienna, Austria.
The HPT complex, consisting of the hypothalamus, pituitary and thyroid, functions as a regulated system controlled by the respective hormones. This system maintains an intrinsic equilibrium, called the set point, which is unique to each individual. In order to optimize the treatment of thyroid patients and understand the dynamics of the system, a validated theoretical representation of this set point is required.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
School of Information Science and Technology, Northwest University, Xi'an 710127, China.
Designing and discovering superior type-II band alignment are crucial for advancing optoelectronic device technologies. Here, we employ first-principles calculations to investigate the evolution of band edges in monolayer MoS, boron phosphide (BP), and MoS/BP heterostructures before and after their rolling into nanotubes. Our research results indicate that the intrinsic MoS/BP vertical heterostructures exhibit a type-II direct bandgap, but this feature is not robust under strain.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, 450001, China.
Curvature-induced interfacial electric field effects and local strain engineering offer a powerful approach for optimizing the intrinsic catalytic activity of single-atom catalysts (SACs). Investigations into the surface curvature on SACs are still ongoing, and the impact of the concave surface is often overlooked. In this work, theoretical calculations indicate that curved surfaces, particularly those with concavity, can optimize the electronic structures of single Fe sites and facilitate the reductive release of *OH.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!