Ogg1 null mice exhibit age-associated loss of the nigrostriatal pathway and increased sensitivity to MPTP.

Neurochem Int

Center for Environmental Health Sciences, Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812, USA.

Published: October 2012

Cumulative damage to cellular macromolecules via oxidative stress is a hallmark of aging and neurodegenerative disease. Whether such damage is a cause or a subsequent effect of neurodegeneration is still unknown. This paper describes the development of an age-associated mild parkinsonian model in mice that lack the DNA repair enzyme 8-oxoguanine glycosylase 1 (Ogg1). Aged OGG1 knock-out (OGG1 KO) mice show a decreased spontaneous locomotor behavior and evidence a decrease in striatal dopamine levels, a loss of tyrosine hydroxylase (TH)-positive neurons in the substantia nigra (SN), and an increase in ubiquitin-positive inclusions in their remaining SN neurons. In addition, young OGG1 KO mice are more susceptible to the dopaminergic toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) than their wild-type (WT) counterparts. Age-associated increases in 7,8-dihydro-2'-deoxyguanine (oxo(8)dG) have been reported in brain regions and neuronal populations affected in Parkinson's disease (PD), toxin-induced parkinsonian models, and mice harboring genetic abnormalities associated with PD. Because of these increased oxo(8)dG levels, the OGG1 KO mouse strain could shed light on molecular events leading to neuronal loss as a consequence of cumulative oxidative damage to DNA during aging and after toxicological challenge.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3468700PMC
http://dx.doi.org/10.1016/j.neuint.2012.06.013DOI Listing

Publication Analysis

Top Keywords

ogg1 mice
8
ogg1
6
mice
5
ogg1 null
4
null mice
4
mice exhibit
4
exhibit age-associated
4
age-associated loss
4
loss nigrostriatal
4
nigrostriatal pathway
4

Similar Publications

The fundamental skills for motor coordination and motor control emerge through development. Neurodevelopmental disorders such as developmental coordination disorder (DCD) lead to impaired acquisition of motor skills. This study investigated motor behaviors that reflect the core symptoms of human DCD through the use of BXD recombinant inbred strains of mice that are known to have divergent phenotypes in many behavioral traits, including motor activity.

View Article and Find Full Text PDF

Hexavalent chromium (Cr (VI)) poses a major health risk due to its high solubility and cell permeability, often exceeding permitted drinking water limits globally. Research has highlighted a strong correlation between Cr (VI) exposure through drinking water and increased cancer rates, particularly in near chrome industries. Our previous research demonstrated that chronic low-dose Cr (VI) exposure (2, 5 and 10 ppm) via drinking water stimulated hepatotoxicity in Swiss albino mice.

View Article and Find Full Text PDF

The fetal brain is susceptible to programming effects during pregnancy, potentially leading to long-term consequences for offspring's cognitive health. Fructose intake is thought to adversely affect fetal brain development, whereas physical exercise before and during pregnancy may be protective. Therefore, this study aimed to assess biochemical and genotoxic changes in maternal hippocampi and behavioral, genotoxic, and biochemical alterations in offspring hippocampi.

View Article and Find Full Text PDF

E-cigarettes (E.cigs) cause inflammation and damage to human organs, including the lungs and heart. In the gut, E.

View Article and Find Full Text PDF

Background: The interplay of OGG1, 8-Oxoguanine, and oxidative stress triggers the exaggerated release of cytokines during malaria, which worsens the outcome of the disease. We aimed to investigate the involvement of OGG1 in malaria and assess the effect of modulating its activity on the cytokine environment and anemia during malaria in mice.

Methods: infection in ICR mice was used as a malaria model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!