Enhanced arsenic removal using mixed metal oxide impregnated chitosan beads.

Water Res

Yale University, Department of Chemical and Environmental Engineering, 9 Hillhouse Ave., Mason Lab 301, New Haven, CT 06511, USA.

Published: September 2012

Mixed metal oxide impregnated chitosan beads (MICB) containing nanocrystalline Al₂O₃ and nanocrystalline TiO₂ were successfully developed. This adsorbent exploits the high capacity of Al₂O₃ for arsenate and the photocatalytic activity of TiO₂ to oxidize arsenite to arsenate, resulting in a removal capacity higher than that of either metal oxide alone. The composition of the beads was optimized for maximum arsenite removal in the presence of UV light. The mechanism of removal was investigated and a mode of action was proposed wherein TiO₂ oxidizes arsenite to arsenate which is then removed from solution by Al₂O₃. Pseudo-second order kinetics were used to validate the proposed mechanism. MICB is a more efficient and effective adsorbent for arsenic than TiO₂-impregnated chitosan beads (TICB), previously reported on, yet maintains a desirable life cycle, free of complex synthesis processes, toxic materials, and energy inputs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2012.06.004DOI Listing

Publication Analysis

Top Keywords

metal oxide
12
chitosan beads
12
mixed metal
8
oxide impregnated
8
impregnated chitosan
8
arsenite arsenate
8
enhanced arsenic
4
removal
4
arsenic removal
4
removal mixed
4

Similar Publications

Enhanced bone cement for fixation of prosthetic joint utilizing nanoparticles.

J Mater Sci Mater Med

January 2025

Biomedical Engineering Department, Faculty of Engineering, Helwan University, Cairo, Egypt.

Bone cement is commonly utilized to secure prosthetic joints in the body because of its robust fixation, stability, biocompatibility, and immediate load-bearing capability. However, issues such as loosening, leakage, and insufficient bioactivity can lead to its failure. Therefore, improving its mechanical, physical, and biological properties is crucial for enhancing its efficiency.

View Article and Find Full Text PDF

Purpose Of Review: Using advanced bibliometric analysis, we systematically mapped the most current literature on urban air pollution and neurodevelopmental conditions to identify key patterns and associations. Here, we review the findings from the broader literature by discussing a distilled, validated subset of 44 representative studies.

Recent Findings: Literature highlights a complex relationship between environmental toxins, neurodevelopmental disorders in children, and neurobehavioral pathways involving oxidative stress, neuroinflammation, and protein aggregation.

View Article and Find Full Text PDF

Fulfilment of energy demand by utilizing renewable energy sources that do not contribute to the production of greenhouse gases is a step forward in mitigating global warming. However, with the energy sources being intermittent in nature, renewable energy needs to be stored effectively on a grid scale. In this context, the development of redox-flow batteries has emerged as a promising technology where charging and discharging processes are accomplished by the redox shuttling of the electrolytes, namely anolytes and catholytes.

View Article and Find Full Text PDF

Compared to aziridines, azaphosphiridines, which formally result from the replacement of a carbon atom by phosphorus, have been much less studied. In this work, accurate values for one of the most prominent properties, the ring strain energy (RSE), have been theoretically examined for a wide range of azaphosphiridine derivatives. Strongly related aspects of interest for developing the use of azaphosphiridines in heteroatom and polymer chemistry are ring opening reactions and polymerisations, the latter facilitated by their significantly high RSE.

View Article and Find Full Text PDF

The aqueous extract from the bark of Eucommia ulmoides serves as a rich source of bioactive compounds with numerous health benefits. The protocol here aims to explore the preparation of zinc oxide (ZnO) nanoparticles using the Eucommia ulmoides bark-mediated polyisoprene-rich aqueous extract. Meanwhile, the proposed protocol is associated with the preparation of wound healing material by easing the process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!