The pH dependence of the HIV-1 protease inhibitor affinity was studied by determining the interaction kinetics of a series of inhibitors at three pH values by surface plasmon resonance (SPR) biosensor analysis. The results were rationalized by molecular mechanics based protocols that have as a starting point the structures of the HIV-1 protease inhibitor complexes differing in the protonation states as predicted by our calculations. The SPR experiments indicate a variety of binding affinity pH dependencies which are rather well reproduced by our simulations. Moreover, our calculations are able to pinpoint the possible changes in the charged state of the protein binding site and of the inhibitor that underlie the observed effects of the pH on binding affinity. The combination of SPR and molecular mechanics calculations has afforded novel insights into the pH dependence of inhibitor interactions with their target. This work raises the possibility of designing inhibitors with different pH binding affinity profiles to the ones described here.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bmc.2012.05.070 | DOI Listing |
J Biomol Struct Dyn
December 2024
Discipline of Virology, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa.
Highly mutated HIV-1 protease (PR) compromises the efficacy of lopinavir (LPV) and darunavir (DRV) used to formulate salvage regimens in HIV/AIDS management. Here, we report the kinetics of inhibition of lopinavir (LPV) and darunavir (DRV) on highly mutated South African HIV-1 subtype C PR obtained from clinical isolates. The wild-type and mutant South African HIV-1 subtype C PR were cloned and purified.
View Article and Find Full Text PDFFuture Med Chem
November 2024
Laboratory of Computational Modeling of Drugs, Higher Medical & Biological School, South Ural State University, Chelyabinsk, 454008, Russia.
To develop a model for predicting the biological activity of compounds targeting the HIV-1 protease and to establish factors influencing enzyme inhibition. Machine learning models were built based on a combination of Richard Bader's theory of Atoms in Molecules and topological analysis of electron density using experimental x-ray 'protein-ligand' complexes and inhibition constants data. Among all the models tested, logistic regression achieved the highest accuracy of 0.
View Article and Find Full Text PDFViruses
October 2024
Department of Biochemistry, Microbiology and Biotechnology, University of Limpopo, Private Bag X 1106, Sovenga, Polokwane 0727, South Africa.
Cervical cancer cases continue to rise despite all the advanced screening and preventative measures put in place, which include human papillomavirus (HPV) vaccination. These soaring numbers can be attributed to the lack of effective anticancer drugs against cervical cancer; thus, repurposing the human immunodeficiency virus protease inhibitors is an attractive innovation. Therefore, this work was aimed at evaluating the potential anticancer activities of HIV-PIs against cervical cancer cells.
View Article and Find Full Text PDFACS Bio Med Chem Au
October 2024
Center of Excellence in Natural Products Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
Darunavir, a frontline treatment for HIV infection, faces limitations due to emerging multidrug resistant (MDR) HIV strains, necessitating the development of analogs with improved activity. In this study, a combinatorial in silico approach was used to initially design a series of HIV-1 PI analogs with modifications at key sites, P1' and P2', to enhance interactions with HIV-1 PR. Fifteen analogs with promising binding scores were selected for synthesis and evaluated for the HIV-1 PR inhibition activity.
View Article and Find Full Text PDFPhys Chem Chem Phys
October 2024
Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande no Norte, 59072-970, Natal-RN, Brazil.
Inhibition of HIV-1 protease is a cornerstone of antiretroviral therapy. However, the notorious ability of HIV-1 to develop resistance to protease inhibitors (PIs), particularly darunavir (DRV), poses a major challenge. Using quantum chemistry and computer simulations, this study aims to investigate the interactions between two novel PIs, GRL-004 and GRL-063, as well as a wild-type (WT) HIV strain and a DRV-resistant mutant strain.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!