Mechanisms of alkylation by PhCH(2)Cl or CH(3)I in THF and of deuteriation by DCl (4 N in D(2)O) in THF or THF-toluene of lithiated phenylacetonitrile monoanions and dianions obtained with LHMDS, LDA, or n-BuLi are studied by vibrational and NMR spectroscopy and quantum chemistry calculations. Dialkylation of the three dilithio dianions generated with n-BuLi (2.0-2.7 equiv, THF-hexane) depends on their structure: N-lithio (PhCCNLi)(-)Li(+) and (C,N)-dilithio PhCLiCNLi dianions afford PhCR(2)CN (R = PhCH(2), CH(3)) from the intermediate N-lithio monoalkylated monoanion PhCRCNLi 10; C-lithio dianion (PhCLiCN)(-)Li(+) leads to a carbenoid species, the C-lithio monoalkylated nitrile PhCLiRCN 11, which either eliminates carbene Ph-C-R and different LiCN species or isomerizes to PhCRCNLi in the presence of LiX (X = Cl, I). Dialkylation or dideuteriation of monoanions (monomers, dimers, and heterodimers [PhCHCNLi·LiR'], R' = (SiMe(3))(2)N, (i-Pr)(2)N) obtained with LHMDS or LDA (2.4 equiv, THF) proceeds via a sequential mechanism involving monometalation-monoalkylation (or monodeuteriation) reactions. Some carbene and (LiCNLi)(+) are also observed, and explained by another mechanism implying the C-lithio monoalkylated monoanion PhCLiRCN 9 in the presence of LiX. These results show the ambiphilic behavior of PhCLiRCN as a carbenoid (11) or a carbanion (9) and the importance of LiX formed in situ in the first alkylation step.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jo300758g | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!