Almost all Streptococcus pneumoniae (pneumococcus) capsule serotypes employ the Wzy-dependent pathway for their capsular polysaccharide (CPS) biosynthesis. The assembly of the CPS repeating unit (RU) is the first committed step in this pathway. The wciN gene was predicted to encode a galactosyltransferase involved in the RU assembly of pneumococcus type 6B CPS. Herein, we provide the unambiguous in vitro biochemical evidence that wciN encodes an α-1,3-galactosyltransferase catalyzing the transfer of galactosyl from UDP-Gal onto the Glcα-pyrophosphate-lipid (Glcα-PP-lipid) acceptor to form Galα(1-3)Glcα-PP-lipid. A chemically synthesized acceptor (Glcα-PP-O(CH(2))(10)CH(3)) was used to characterize the WciN activity. The disaccharide product, i.e., Galα(1-3)Glcα-PP-O(CH(2))(10)CH(3), was characterized by mass and NMR spectroscopy. Substrate specificity study indicated that the acceptor structural region composed of pyrophosphate and lipid moieties may play an important role in the enzyme-acceptor recognition. Furthermore, divalent metal cations were found indispensable to the WciN activity, suggesting that this glycosyltransferase (GT) belongs to the GT-A superfamily. By analyzing the activities of six WciN mutants, a DXD motif involved in the coordination of a divalent metal cation was identified. This work provides a chemical biology approach to characterize the activities of pneumococcal CPS GTs in vitro and will help to better understand the pneumococcal CPS biosynthetic pathway.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3422735 | PMC |
http://dx.doi.org/10.1021/bi300640b | DOI Listing |
Stem Cell Reports
July 2024
Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, OX3 9DU Oxford, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, OX1 3QU Oxford, UK. Electronic address:
Induced pluripotent stem cell (iPSC)-derived motor neurons (MNs) from patients with amyotrophic lateral sclerosis (ALS) and the C9ORF72 hexanucleotide repeat expansion (HRE) have multiple cellular phenotypes, but which of these accurately reflect the biology underlying the cell-specific vulnerability of ALS is uncertain. We therefore compared phenotypes due to the C9ORF72 HRE in MNs with sensory neurons (SNs), which are relatively spared in ALS. The iPSC models were able to partially reproduce the differential gene expression seen between adult SNs and MNs.
View Article and Find Full Text PDFTransl Lung Cancer Res
April 2024
Department of Thoracic Oncology and Surgery, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
Background: Albeit considered with superior survival, around 30% of the early-stage non-squamous non-small cell lung cancer (Ns-NSCLC) patients relapse within 5 years, suggesting unique biology. However, the biological characteristics of early-stage Ns-NSCLC, especially in the Chinese population, are still unclear.
Methods: Multi-omics interrogation of early-stage Ns-NSCLC (stage I-III), paired blood samples and normal lung tissues (n=76) by whole-exome sequencing (WES), RNA sequencing, and T-cell receptor (TCR) sequencing were conducted.
Cell Rep
December 2022
Georg August University Göttingen, University Medical Center Göttingen (UMG), Department of Molecular Oncology, Section for Cellular Oncology, 37077 Göttingen, Germany. Electronic address:
Chromosomal instability (CIN) is a hallmark of cancer and comprises structural CIN (S-CIN) and numerical or whole chromosomal CIN (W-CIN). Recent work indicated that replication stress (RS), known to contribute to S-CIN, also affects mitotic chromosome segregation, possibly explaining the common co-existence of S-CIN and W-CIN in human cancer. Here, we show that RS-induced increased origin firing is sufficient to trigger W-CIN in human cancer cells.
View Article and Find Full Text PDFCancers (Basel)
March 2022
Department of Mathematics and Technology, University of Applied Sciences Koblenz, 53424 Remagen, Germany.
A large proportion of tumours is characterised by numerical or structural chromosomal instability (CIN), defined as an increased rate of gaining or losing whole chromosomes (W-CIN) or of accumulating structural aberrations (S-CIN). Both W-CIN and S-CIN are associated with tumourigenesis, cancer progression, treatment resistance and clinical outcome. Although W-CIN and S-CIN can co-occur, they are initiated by different molecular events.
View Article and Find Full Text PDFOncogene
January 2021
Georg-August University Göttingen, Göttingen Center for Molecular Biosciences (GZMB) and University Medical Center Göttingen (UMG), Institute of Molecular Oncology, Section for Cellular Oncology, D-37077, Göttingen, Germany.
Whole chromosome instability (W-CIN) is a hallmark of human cancer and contributes to the evolvement of aneuploidy. W-CIN can be induced by abnormally increased microtubule plus end assembly rates during mitosis leading to the generation of lagging chromosomes during anaphase as a major form of mitotic errors in human cancer cells. Here, we show that loss of the tumor suppressor genes TP53 and TP73 can trigger increased mitotic microtubule assembly rates, lagging chromosomes, and W-CIN.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!