P2Y(2) receptor expression is regulated by C/EBPβ during inflammation in intestinal epithelial cells.

FEBS J

Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada.

Published: August 2012

Inflammatory bowel diseases are characterized by relapses and remission periods during which numerous factors, including stress factors and nucleotides, are mobilized to re-establish intestinal mucosal homeostasis. We have previously found that expression of the P2Y(2) nucleotide receptor is increased in colonic tissue isolated from inflammatory bowel disease patients as well as in a mouse model of colitis, and that P2Y(2) transcription is regulated in part by nuclear factor κB (NF-κB) p65. Transcription factor DNA-binding site analysis identified three potential CCAAT/enhancer-binding protein β (C/EBPβ) binding sites in the P2Y(2) proximal promoter. We then assessed the role of C/EBP transcription factors in the regulation of P2Y(2) in intestinal epithelial cells (IECs). We identified a region between -229 and -220 bp upstream of the transcription initiation site as a DNA-binding site for C/EBPβ, by electrophoretic mobility and supershift assays. Mutagenesis of this site decreased C/EBPβ-dependent P2Y(2) expression, as assessed by luciferase assays. In vivo, C/EBPβ as well as P2Y(2) expression was increased in colonic IECs isolated from mice with dextran sulfate sodium-induced acute colitis. In contrast, P2Y(2) expression was decreased in C/EBPβ-deficient mice treated with dextran sulfate sodium. Although C/EBPβ was sufficient to induce P2Y(2) transcription, the effect of C/EBPβ and NF-κB p65 on receptor transcription was synergistic. Chromatin immunoprecipitation assays revealed that both proteins simultaneously bind to the P2Y(2) promoter. Thus, we have identified C/EBPβ as a novel regulator of P2Y(2) expression.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1742-4658.2012.08676.xDOI Listing

Publication Analysis

Top Keywords

p2y2 expression
16
p2y2
11
intestinal epithelial
8
epithelial cells
8
inflammatory bowel
8
increased colonic
8
p2y2 transcription
8
nf-κb p65
8
dna-binding site
8
dextran sulfate
8

Similar Publications

Chronic kidney disease is defined as a progressive loss of kidney function associated with impaired recovery after acute kidney injury. Renal ischemia-reperfusion (IR) induces oxidative stress and inflammatory responses leading to severe tissue damage, where incomplete or maladaptive repair accelerates renal fibrosis and aging. To investigate the role of the purinergic P2Y2 receptor (P2Y2R) in these processes, we used P2Y2R knockout (KO) mice subjected to IR.

View Article and Find Full Text PDF

Activation of Purinergic P2Y2 Receptor Protects the Kidney Against Renal Ischemia and Reperfusion Injury in Mice.

Int J Mol Sci

November 2024

Department of Pharmacology, Institute of Medical Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea.

Extracellular ATP plays an important role in renal physiology as well as the pathogenesis of acute kidney injury induced by renal ischemia and reperfusion (IR). Expression of the purinergic P2Y2 receptor has been shown on inflammatory and structural cells of the kidney, and P2Y2R is preferably activated by ATP (or UTP). Here, we investigated the molecular mechanism of P2Y2R during IR injury by using P2Y2R knockout (KO) mice and a selective P2Y2R agonist, MRS2768.

View Article and Find Full Text PDF

Our previous work had identified that at the acupuncture point (acupoint), acupuncture-induced ATP release was a pivotal event in the initiation of analgesia. We aimed to further elucidate the degradation of ATP by CD39. Acupuncture was administered at Zusanli acupoint on arthritis rats, and pain thresholds of the hindpaws were determined.

View Article and Find Full Text PDF

G protein coupled P2Y2 receptor as a regulatory molecule in cancer progression.

Arch Biochem Biophys

December 2024

Urology Department, The Second Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang City, China. Electronic address:

The occurrence and development of cancer involves the participation of many factors, its pathological mechanism is far more complicated than other diseases, and the treatment is also extremely difficult. Although the treatment of cancer adopts diversified methods to improve the survival rate and quality of life of patients, but the drug resistance, metastasis and recurrence of cancer cause most patients to fail in treatment. Therefore, exploring new molecular targets in cancer pathology is of great value for improving and preventing the treatment of cancer.

View Article and Find Full Text PDF

P2X7 receptor in macrophage polarization and its implications in neuroblastoma tumor behavior.

Purinergic Signal

October 2024

Metastasis Molecular Mechanisms Laboratory and Neurosciences Laboratory, Institute of Chemistry, Biochemistry Department, University of Sao Paulo, Sao Paulo, Brazil.

Tumor-associated macrophages (TAMs) exhibit antitumor or protumor responses related to inflammatory (or M1) and alternative (or M2) phenotypes, respectively. The P2X7 receptor plays a key role in macrophage polarization, influencing inflammation and immunosuppression. In this study, we investigated the role of the P2X7 receptor in TAMs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!