We present a numerical tool to compare directly the contrast-to-noise-ratio (CNR) of the attenuation- and differential phase-contrast signals available from grating-based X-ray imaging for single radiographs. The attenuation projection is differentiated to bring it into a modality comparable to the differential phase projection using a Gaussian derivative filter. A Relative Contrast Gain (RCG) is then defined as the ratio of the CNR of image values in a region of interest (ROI) in the differential phase projection to the CNR of image values in the same ROI in the differential attenuation projection. We apply the method on experimental data of human breast tissue acquired using a grating interferometer to compare the two contrast modes for two regions of interest differing in the type of tissue. Our results indicate that the proposed method can be used as a local estimate of the spatial distribution of the ratio δ/β, i.e., real and imaginary part of the complex refractive index, across a sample.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3370957 | PMC |
http://dx.doi.org/10.1364/BOE.3.001141 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!