Over 10,000 arthropod species are currently considered to be pest organisms. They are estimated to contribute to the destruction of ~14% of the world's annual crop production and transmit many pathogens. Presently, arthropod pests of agricultural and health significance are controlled predominantly through the use of chemical insecticides. Unfortunately, the widespread use of these agrochemicals has resulted in genetic selection pressure that has led to the development of insecticide-resistant arthropods, as well as concerns over human health and the environment. Bioinsecticides represent a new generation of insecticides that utilise organisms or their derivatives (e.g., transgenic plants, recombinant baculoviruses, toxin-fusion proteins and peptidomimetics) and show promise as environmentally-friendly alternatives to conventional agrochemicals. Spider-venom peptides are now being investigated as potential sources of bioinsecticides. With an estimated 100,000 species, spiders are one of the most successful arthropod predators. Their venom has proven to be a rich source of hyperstable insecticidal mini-proteins that cause insect paralysis or lethality through the modulation of ion channels, receptors and enzymes. Many newly characterized insecticidal spider toxins target novel sites in insects. Here we review the structure and pharmacology of these toxins and discuss the potential of this vast peptide library for the discovery of novel bioinsecticides.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3381931 | PMC |
http://dx.doi.org/10.3390/toxins4030191 | DOI Listing |
Microorganisms
December 2024
Key Laboratory of Genetic Evolution & Animal Models, Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, and Sino-African Joint Research Center, New Cornerstone Science Laboratory, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming 650201, China.
The venoms of Theraphosidae spiders have evolved into diverse natural pharmacopeias through selective pressures. is a global health threat that frequently causes life-threatening meningitis and fungemia, particularly in immunocompromised patients. In this study, we identify a novel anti- peptide, QS18 (QCFKVCFRKRCFTKCSRS), from the venom gland of China's native spider species by utilizing bioinformatic tools.
View Article and Find Full Text PDFAntibiotics (Basel)
November 2024
Department of Life Science, Dongguk University-Seoul, Goyang 10326, Republic of Korea.
J Venom Anim Toxins Incl Trop Dis
November 2024
Department of Pharmacy, Federal University of Ouro Preto (UFOP), Ouro Preto, MG, Brazil.
Background: Medications currently used to treat pain are frequently associated with serious adverse effects and rapid development of tolerance. Thus, there is a need to develop more effective, and safer medicines for the population. Blocking NMDA receptors (NMDAR) has shown to be a promising target for the development of new drugs.
View Article and Find Full Text PDFNeurochem Res
December 2024
School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing, 100084, China.
A sharp increase in intramedullary pressure after spinal cord injury (SCI) can aggravate secondary injury and lead to severe neurological deficits. Unfortunately, effective treatment options are currently lacking. The mechanosensitive ion channel Piezo1 plays an important role in the pathological process of SCI by transducing mechanical stress.
View Article and Find Full Text PDFAntimicrob Agents Chemother
December 2024
Institute of Biochemistry and Molecular Biology, Hengyang Medical College, University of South China, Hengyang, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!