Large-scale proteome comparative analysis of developing rhizomes of the ancient vascular plant equisetum hyemale.

Front Plant Sci

Department of Biochemistry, Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri Columbia, MO, USA.

Published: August 2012

Horsetail (Equisetum hyemale) is a widespread vascular plant species, whose reproduction is mainly dependent on the growth and development of the rhizomes. Due to its key evolutionary position, the identification of factors that could be involved in the existence of the rhizomatous trait may contribute to a better understanding of the role of this underground organ for the successful propagation of this and other plant species. In the present work, we characterized the proteome of E. hyemale rhizomes using a GeLC-MS spectral-counting proteomics strategy. A total of 1,911 and 1,860 non-redundant proteins were identified in the rhizomes apical tip and elongation zone, respectively. Rhizome-characteristic proteins were determined by comparisons of the developing rhizome tissues to developing roots. A total of 87 proteins were found to be up-regulated in both horsetail rhizome tissues in relation to developing roots. Hierarchical clustering indicated a vast dynamic range in the regulation of the 87 characteristic proteins and revealed, based on the regulation profile, the existence of nine major protein groups. Gene ontology analyses suggested an over-representation of the terms involved in macromolecular and protein biosynthetic processes, gene expression, and nucleotide and protein binding functions. Spatial difference analysis between the rhizome apical tip and the elongation zone revealed that only eight proteins were up-regulated in the apical tip including RNA-binding proteins and an acyl carrier protein, as well as a KH domain protein and a T-complex subunit; while only seven proteins were up-regulated in the elongation zone including phosphomannomutase, galactomannan galactosyltransferase, endoglucanase 10 and 25, and mannose-1-phosphate guanyltransferase subunits alpha and beta. This is the first large-scale characterization of the proteome of a plant rhizome. Implications of the findings were discussed in relation to other underground organs and related species.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3382741PMC
http://dx.doi.org/10.3389/fpls.2012.00131DOI Listing

Publication Analysis

Top Keywords

elongation zone
12
proteins up-regulated
12
vascular plant
8
equisetum hyemale
8
plant species
8
apical elongation
8
rhizome tissues
8
developing roots
8
proteins
7
protein
5

Similar Publications

Cassava Waste Starch as a Source of Bioplastics: Development of a Polymeric Film with Antimicrobial Properties.

Foods

January 2025

Programa de Pós-Graduação em Ciência de Alimentos (PPGCA), Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil.

Polysaccharides represent the most abundant biopolymers in agri-food wastes and thus are the most studied polymers to produce biodegradable films for use in packaging. Starch is among the major polysaccharides extracted from food and agricultural waste that have been used as precursor material for film production. Therefore, the present study aimed at producing an active film with antimicrobial properties using starch extracted from cassava waste and oil extracted from cloves.

View Article and Find Full Text PDF

TC17 titanium alloy is widely used in the aviation industry for dual-performance blades, and linear friction welding (LFW) is a key technology for its manufacturing and repair. However, accurate evaluation of the mechanical properties of TC17-LFW joints and research on their joint fracture behavior are still not clear. Therefore, this paper used the finite element numerical simulation method (FEM) to investigate the mechanical behavior of the TC17-LFW joint with a complex micro-structure during the tensile processing, and predicted its mechanical properties and fracture behavior.

View Article and Find Full Text PDF

Fruit Vinegars as Natural and Bioactive Chitosan Solvents in the Production of Chitosan-Based Films.

Polymers (Basel)

December 2024

Department of Chemistry, Faculty of Forestry and Wood Technology, Poznan University of Life Sciences, Wojska Polskiego 75, 60625 Poznan, Poland.

Natural fruit vinegars, derived from various fruits, enhance culinary experience and offer potential health benefits due to their bioactive compounds. In this study, fruit vinegars (apple, blackcurrant, and cherry) were used as natural solvents for producing chitosan films, introducing an environmentally friendly approach. Fruit vinegars and chitosan-based solutions were examined for their antioxidant and antimicrobial properties.

View Article and Find Full Text PDF

Atmosphere-controlled high-voltage electrospray (AHES) was utilised to modify the structure of chitosan (CS) films. The applied voltage in the AHES process ranged from 60 to 100 kV, with variations in the O content of the propellant gas from 0 to 100 %. The number density of cations in the charging environment reached 600 × 10 cations/cm.

View Article and Find Full Text PDF

Hormonal mechanisms associated with cell elongation play a vital role in the development and growth of plants. Here, we report Nextflow-root (nf-root), a novel best-practice pipeline for deep-learning-based analysis of fluorescence microscopy images of plant root tissue from A. thaliana.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!