Motile cilia and flagella are highly conserved organelles that play important roles in human health and development. We recently discovered a calmodulin- and spoke-associ-ated complex (CSC) that is required for wild-type motility and for the stable assembly of a subset of radial spokes. Using cryo-electron tomography, we present the first structure-based localization model of the CSC. Chlamydomonas flagella have two full-length radial spokes, RS1 and RS2, and a shorter RS3 homologue, the RS3 stand-in (RS3S). Using newly developed techniques for analyzing samples with structural heterogeneity, we demonstrate that the CSC connects three major axonemal complexes involved in dynein regulation: RS2, the nexin-dynein regulatory complex (N-DRC), and RS3S. These results provide insights into how signals from the radial spokes may be transmitted to the N-DRC and ultimately to the dynein motors. Our results also indicate that although structurally very similar, RS1 and RS2 likely serve different functions in regulating flagellar motility.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3418309 | PMC |
http://dx.doi.org/10.1091/mbc.E12-05-0357 | DOI Listing |
Nature
January 2025
Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA.
Reproduction, development and homeostasis depend on motile cilia, whose rhythmic beating is powered by a microtubule-based molecular machine called the axoneme. Although an atomic model of the axoneme is available for the alga Chlamydomonas reinhardtii, structures of mammalian axonemes are incomplete. Furthermore, we do not fully understand how molecular structures of axonemes vary across motile-ciliated cell types in the body.
View Article and Find Full Text PDFDev Cell
December 2024
Department of Molecular Biosciences, University of Texas, Austin, Austin, TX 78712, USA. Electronic address:
Motile cilia are ancient, evolutionarily conserved organelles whose dysfunction underlies motile ciliopathies, a broad class of human diseases. Motile cilia contain a myriad of different proteins that assemble into an array of distinct machines, and understanding the interactions and functional hierarchies among them presents an important challenge. Here, we defined the protein interactome of motile axonemes using cross-linking mass spectrometry in Tetrahymena thermophila.
View Article and Find Full Text PDFElife
December 2024
Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.
The structural integrity of the sperm is crucial for male fertility, defects in sperm head-tail linkage and flagellar axoneme are associated with acephalic spermatozoa syndrome (ASS) and the multiple morphological abnormalities of the sperm flagella (MMAF). Notably, impaired head-tail coupling apparatus (HTCA) often accompanies defects in the flagellum structure, however, the molecular mechanisms underlying this phenomenon remain elusive. Here, we identified an evolutionarily conserved coiled-coil domain-containing (CCDC) protein, CCDC113, and found the disruption of CCDC113 produced spermatozoa with disorganized sperm flagella and HTCA, which caused male infertility.
View Article and Find Full Text PDFMol Biol Cell
December 2024
Department of Cell Biology, University of Texas Southwestern Medical Center, Texas 75235, USA.
Cilia and flagella play a crucial role in the development and function of eukaryotes. The activity of thousands of dyneins is precisely regulated to generate flagellar motility. The complex proteome (600+ proteins) and architecture of the structural core of flagella, the axoneme, have made it challenging to dissect the functions of the different complexes, like the regulatory machinery.
View Article and Find Full Text PDFPhys Med Biol
November 2024
Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, Garching, Germany.
Radial cine-MRI allows for sliding window reconstruction at nearly arbitrary frame rate, promising high-speed imaging for intra-fractional motion monitoring in magnetic resonance guided radiotherapy. However, motion within the reconstruction window may determine the location of the reconstructed target to deviate from the true real-time position (target positioning errors), particularly in cases of fast breathing or for anatomical structures affected by the heartbeat. In this work, we present a proof-of-concept study aiming to enhance radial cine-MR imaging by implementing deep-learning-based intra-frame motion compensation techniques.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!