A comparative study of the laser-induced damage thresholds (LIDTs) of fused silica substrates and their sol-gel silica coatings was carried out with 355 nm laser irradiation. Chemical etching and superpolishing were employed in different ways to improve the substrate. The laser damage tests showed that the coated substrate was no more susceptible to laser damage than the bare substrate, showing that the substrate quality was the dominant factor limiting the LIDT for UV irradiation. In addition, it was found that high value of substrate microroughness was more harmful to the LIDT of the coated than the bare substrate, and that a proper combination of etching and superpolishing can optimize the LIDT.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.37.002364 | DOI Listing |
Micromachines (Basel)
December 2024
School of Opto-Electronical Engineering, Xi'an Technological University, Xi'an 710021, China.
The laser-induced damage threshold (LIDT) is a key measure of an optical component's resistance to laser damage, making its accurate determination crucial. Following the ISO 21254 standards, we studied the measurement strategy and uncertainty fitting method for laser damage, establishing a calculation model for uncertainty. Research indicates that precise LIDT measurement can be achieved by using a small energy level difference and conducting multiple measurements.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
College of Electronic and Optical Engineering and College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
Silver gallium sulfide (AgGaS) is a ternary ABX-type semiconductor featuring a direct bandgap and high chemical stability. Structurally resembling diamond, AgGaS has gained considerable attention as a highly promising material for nonlinear optical applications such as second harmonic generation and optical parametric oscillation. In attempts to expand the research scope, on the one hand, AgGaS-derived bulk materials with similar diamond-like configurations have been investigated for the enhancement of nonlinear optics performance, especially the improvement of laser-induced damage thresholds and/or nonlinear coefficients; on the other hand, nanoscale AgGaS and its derivatives have been synthesized with sizes as low as the exciton Bohr radius for the realization of potential applications in the fields of optoelectronics and lighting.
View Article and Find Full Text PDFMol Med
January 2025
Research Institute, National Cancer Center, Goyang-Si, Gyeonggi-Do, 10408, Republic of Korea.
Background: Double-strand breaks (DSBs) are primarily repaired through non-homologous end joining (NHEJ) and homologous recombination (HR). Given that DSBs are highly cytotoxic, PARP inhibitors (PARPi), a prominent class of anticancer drugs, are designed to target tumors with HR deficiency (HRD), such as those harboring BRCA mutations. However, many tumor cells acquire resistance to PARPi, often by restoring HR in HRD cells through the inactivation of NHEJ.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Theoretical Physics Section, Bhabha Atomic Research Centre, Mumbai-400085, India.
Extensive research on ultrashort laser-induced melting of noble metals like Au, Ag and Cu is available. However, studies on laser energy deposition and thermal damage of their alloys, which are currently attracting interest for energy harvesting and storage devices, are limited. This study investigates the melting damage threshold (DT) of three intermetallic alloys of Au and Cu (AuCu, AuCu and AuCu) subjected to single-pulse femtosecond laser irradiation, comparing them with their constituent metals.
View Article and Find Full Text PDFSmall
January 2025
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China.
Improved birefringence, given its capacity to modulate polarized light, holds a lively role in the optoelectronic industry. Traditionally, alkaline-earth metal halides have possessed low birefringence due to their nearly optical isotropic properties. Herein, the substitution of interlayer anion with linear S─S unit that meticulously engineered by reduced valence state and strong covalent bond is integrated into the optically isotropic BaF, offering the new salt-inclusion chalcogenide BaFS.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!