The transmittive and reflective Z-scan technique is used with a 10 Hz, frequency doubled, Q-switched, and mode-locked Nd:YAG laser to verify that the reflectivity of the super-resolution near-field structure of an SiN/Sb/SiN thin film increases as incident intensity decreases. This intensity-dependent reflection, called nonlinear reflection, reflects a TEM(00) mode laser beam more strongly at its periphery than at its center and so shrinks the transmitted laser beam. The observed nonlinear reflection is attributed to laser-induced change of carrier densities in Sb, to justify quantitatively the experimental results.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.37.002340DOI Listing

Publication Analysis

Top Keywords

laser beam
12
super-resolution near-field
8
near-field structure
8
structure sin/sb/sin
8
sin/sb/sin thin
8
thin film
8
nonlinear reflection
8
shrinkage picosecond
4
laser
4
picosecond laser
4

Similar Publications

Quantifying the mechanical response of the biological milieu (such as the cell's interior) and complex fluids (such as biomolecular condensates) would enable a better understanding of cellular differentiation and aging and accelerate drug discovery. Here we present time-shared optical tweezer microrheology to determine the frequency- and age-dependent viscoelastic properties of biological materials. Our approach involves splitting a single laser beam into two near-instantaneous time-shared optical traps to carry out simultaneous force and displacement measurements and quantify the mechanical properties ranging from millipascals to kilopascals across five decades of frequency.

View Article and Find Full Text PDF

Space division multiplexing (SDM) with Hermite Gaussian (HG) modes, for instance, can significantly boost the transmission link capacity. However, SDM is not suitable in existing single mode fiber networks, and in long-distance wireless, microwave, THz or optical links, the far-field beam distribution may present a problem. Recently it has been demonstrated, that time domain HG modes can be employed to enhance the link capacity.

View Article and Find Full Text PDF

High-power tunable lasers are intensely pursued due to their vast application potential such as in telecom, ranging, and molecular sensing. Integrated photonics, however, is usually considered not suitable for high-power applications mainly due to its small size which limits the energy storage capacity and, therefore, the output power. In the late 90s, to improve the beam quality and increase the stored energy, large-mode-area (LMA) fibers were introduced in which the optical mode area is substantially large.

View Article and Find Full Text PDF

Giant Photogalvanic Effect-Induced Terahertz Wave Emission in Wafer-Scale Type-II Dirac Semimetal PtTe.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China.

Terahertz (THz) emission arising from the second-order nonlinear photocurrent effects in two-dimensional quantum materials has attracted significant attention due to its high efficiency and ease of polarization manipulation. However, in centrosymmetric quantum materials, the terahertz emission is typically suppressed, caused by the directional symmetry of the photocurrent generated under femtosecond laser excitation. In this work, we report that wafer-scale type-II Dirac semimetal PtTe with lattice centrosymmetry exhibits remarkably high THz emission efficiency (2 orders of magnitude greater than that of a ZnTe nonlinear crystal with equivalent thickness) and pronounced polarization sensitivity at room temperature.

View Article and Find Full Text PDF

Helical Surface Relief Formation by Two-Photon Polymerization Reaction Using a Femtosecond Optical Vortex Beam.

J Phys Chem Lett

December 2024

Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan.

Optical vortices possess a helical phase wavefront with central phase dislocation and orbital angular momentum. We demonstrated three-dimensional microstructure formation using a femtosecond optical vortex beam. Two-photon polymerization of photocurable resin was induced by long-term exposure, resulting in the fabrication of cylindrical structures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!