Cellular changes that accompany shedding of human corneocytes.

J Invest Dermatol

Department of Veterans Affairs Medical Center and Department of Dermatology, Dermatology Service, University of California, San Francisco, San Francisco, California, USA. Electronic address:

Published: October 2012

Corneocyte desquamation has been ascribed to the following: 1) proteolytic degradation of corneodesmosomes (CDs); 2) disorganization of extracellular lamellar bilayers; and/or 3) "swell-shrinkage-slough" from hydration/dehydration. To address the cellular basis for normal exfoliation, we compared changes in lamellar bilayer architecture and CD structure in D-Squame strips from the first versus fifth stripping ("outer" vs. "mid"-stratum corneum (SC), respectively) from nine normal adult forearms. Strippings were either processed for standard electron microscopy (EM) or for ruthenium-, or osmium-tetroxide vapor fixation, followed by immediate epoxy embedment, an artifact-free protocol, which, to our knowledge, is previously unreported. CDs are largely intact in the mid-SC, but replaced by electron-dense (hydrophilic) clefts (lacunae) that expand laterally, splitting lamellar arrays in the outer SC. Some undegraded desmoglein 1/desmocollin 1 redistribute uniformly into corneocyte envelopes (CEs) in the outer SC (shown by proteomics, Z-stack confocal imaging, and immunoEM). CEs then thicken, likely facilitating exfoliation by increasing corneocyte rigidity. In vapor-fixed images, hydration only altered the volume of the extracellular compartment, expanding lacunae, further separating membrane arrays. During dehydration, air replaced water, maintaining the expanded extracellular compartment. Hydration also provoked degradation of membranes by activating contiguous acidic ceramidase activity. Together, these studies identify several parallel mechanisms that orchestrate exfoliation from the surface of normal human skin.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3447115PMC
http://dx.doi.org/10.1038/jid.2012.173DOI Listing

Publication Analysis

Top Keywords

extracellular compartment
8
cellular changes
4
changes accompany
4
accompany shedding
4
shedding human
4
human corneocytes
4
corneocytes corneocyte
4
corneocyte desquamation
4
desquamation ascribed
4
ascribed proteolytic
4

Similar Publications

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Yale University, New Haven, CT, USA.

Background: Advances in Alzheimer's disease (AD) have revealed a novel fluid biomarker, tau phosphorylated at T217 (pT217-tau), in CSF and plasma, that predicts AD prior to cognitive deficits. Understanding the role of pT217-tau is important in assessing efficacy of novel treatments aimed at early-stage disease. However, it is unknown why pT217-tau is effective in predicting brain pathology, as little is known about early, soluble pT217-tau brain expression.

View Article and Find Full Text PDF

Background: Pathological tau aggregates cause cognitive decline in neurodegenerative tauopathies, including Alzheimer's disease (AD), and more abundant in intracellular vs. extracellular compartments. However, current immunotherapies are slow and ineffective at clearing intracellular tau aggregates.

View Article and Find Full Text PDF

Background: The apolipoprotein E (APOE) ε4 allele is the strongest genetic risk factor for Alzheimer's disease (AD), increasing risk from 3-12-fold relative to the common ε3 allele. Seminal studies have revealed that age-related changes in blood-CNS communication regulate cognitive function. More recently, youth-associated blood-borne proteins revitalize the aged brain, improving hippocampal function and increasing adult neurogenesis and dendritic spine plasticity.

View Article and Find Full Text PDF

Background: Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) combined with serum carcinoembryonic antigen (CEA) and carbohydrate antigen 19-9 (CA19-9) levels to evaluate the efficacy of colorectal cancer liver metastasis (CRCLM) treatment is still rare.

Purpose: To investigate the predictive value of DCE-MRI combined with serum CEA and CA 19-9 concerning the efficacy of comprehensive treatment for CRCLM.

Materials And Methods: A total of 120 patients with CRC were retrospectively recruited using convenience sampling between May 2019 and March 2024.

View Article and Find Full Text PDF

Cancer metastasis involves cell migration from their primary organ foci into vascular channels, followed by dissemination to prospective colonization sites. Vascular entry of tumor cells or intravasation involves their breaching stromal and endothelial extracellular matrix (ECM) and the endothelial barriers. How the kinetics of this breach are confounded by chronic inflammatory stresses seen in diabetes and aging remains ill-investigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!