The need for clean water has risen exponentially over the globe. Millions of people are affected daily by a lack of clean water, especially women and children, as much of their day is dedicated to collecting water. The global water crisis not only has severe medical implications, but social, political, and economic consequences as well. The Institute of Catholic Bioethics at Saint Joseph's University has recognized this, and has designed a slow-sand water filter that is accessible, cost-effective, and sustainable. Through the implementation of the Institute's slow-sand water filter and the utilization of microfinancing services, developing countries will not only have access to clean, drinkable water, but will also have the opportunity to break out of a devastating cycle of poverty.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3560774PMC
http://dx.doi.org/10.12659/msm.883200DOI Listing

Publication Analysis

Top Keywords

slow-sand water
12
water filter
12
developing countries
8
clean water
8
water
7
filter design
4
design implementation
4
implementation accessibility
4
accessibility sustainability
4
sustainability developing
4

Similar Publications

While recycling irrigation water can reduce water use constraints and costs in nurseries, adoption is hindered by the associated risk of recirculating and spreading waterborne pathogens. To enable regional water re-use, this study assessed oomycete re-circulation risks and recycled water treatment efficacy at organismal and community scales. In culture-based analysis of recycled pond water at two Mid-Atlantic nurseries across three years, diverse oomycetes (12+ species) were detected using culture-based analysis, with Phytopythium helicoides as the dominant species; MiSeq analysis detected eight of these species, plus 24 additional taxa.

View Article and Find Full Text PDF

Slow sand filters with variable filtration rates for rainwater purification: Microecological differences between biofilm and water phases.

J Environ Manage

January 2025

China Architecture Design and Research Group, Beijing, 100044, PR China; Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, PR China.

Slow sand filters (SSFs) have been increasingly applied to rainwater purification in recent years, but the response of SSFs to fluctuating rainfall, as well as the biofilm- and water-phase microecology in SSFs are still poorly understood. This study systematically evaluated the rainwater purification performance of SSFs and compared the bacterial community structure, assembly processes and molecular ecological interactions between the biofilm and water phases. The activated carbon and activated alumina filters exhibited the best performance for NH-N (18.

View Article and Find Full Text PDF

Microbial communities in slow sand filters for drinking water treatment adapt to organic matter altered by ozonation.

Water Res

February 2025

Division of Applied Microbiology, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden; Water Resources Engineering, Department of Building and Environmental Technology, Lund University, SE-221 00 Lund, Sweden.

Changing natural organic matter quality from anthropogenic activity and stricter requirements for micropollutant removal challenges existing systems for drinking water production. Ozonation of water followed by biofiltration, such as passage through a slow sand filter (SSF), is a partial solution. Biofiltration relies on biofilms (microbial communities within extracellular matrices).

View Article and Find Full Text PDF

In a well-functioning slow sand filter (SSF), dissolved oxygen (DO) is crucial for enabling aerobic processes and microbiota growth. Given that DO supply is predominantly via the feed water, flow pauses (e.g.

View Article and Find Full Text PDF

Removing pesticides from biological drinking water filters is challenging due to the difficulty in activating pesticide-degrading bacteria within the filters. Bioaugmented bacteria can alter the filter's microbiome, affecting its performance either positively or negatively, depending on the bacteria used and their interaction with native microbes. We demonstrate that adding specific bacteria strains can effectively remove recalcitrant pesticides, like metaldehyde, yielding compliance to regulatory standards for an extended period.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!