The hMSH2(M688R) mismatch repair (MMR) gene mutation has been found in five large families from Tenerife, Spain, suggesting it is a Lynch syndrome or hereditary non-polyposis colorectal cancer (LS/HNPCC) founder mutation. In addition to classical LS/HNPCC tumors, these families present with a high incidence of central nervous system (CNS) tumors normally associated with Turcot or constitutional mismatch repair deficiency (CMMR-D) syndromes. Turcot and CMMR-D mutations may be biallelic, knocking out both copies of the MMR gene. The hMSH2(M688R) mutation is located in the ATP hydrolysis (ATPase) domain. We show that the hMSH2(M688R)-hMSH6 heterodimer binds to mismatched nucleotides but lacks normal ATP functions and inhibits MMR in vitro when mixed with the wild-type (WT) heterodimer. Another alteration that has been associated with LS/HNPCC, hMSH2(M688I)-hMSH6, displays no identifiable differences with the WT heterodimer. Interestingly, some extracolonic tumors from hMSH2(M688R) carriers may express hMSH2-hMSH6, yet display microsatellite instability (MSI). The functional analysis along with variability in tumor expression and the high incidence of CNS tumors suggests that hMSH2(M688R) may act as a dominant negative in some tissues, while the hMSH2(M688I) is most likely a benign polymorphism.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3514906 | PMC |
http://dx.doi.org/10.1093/carcin/bgs199 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!