Two effective cytochrome P450 (CYP) inhibitors were isolated from tarragon, Artemisia dracunculus. Their structures were spectroscopically identified as 2E,4E-undeca-2,4-diene-8,10-diynoic acid isobutylamide (1) and 2E,4E-undeca-2,4-diene-8,10-diynoic acid piperidide (2). Both compounds had dose-dependent inhibitory effects on CYP3A4 activity with IC50 values of 10.0 ± 1.3 µM for compound 1 and 3.3 ± 0.2 µM for compound 2, and exhibited mechanism-based inhibition. This is the first reported isolation of effective CYP inhibitors from tarragon (Artemisia dracunculus) purchased from a Japanese market.

Download full-text PDF

Source
http://dx.doi.org/10.1271/bbb.120006DOI Listing

Publication Analysis

Top Keywords

cyp inhibitors
12
tarragon artemisia
12
artemisia dracunculus
12
effective cytochrome
8
cytochrome p450
8
p450 cyp
8
inhibitors isolated
8
isolated tarragon
8
2e4e-undeca-24-diene-810-diynoic acid
8
µm compound
8

Similar Publications

Introduction: Zongertinib (BI 1810631) is a potent, selective, and epidermal growth factor receptor (EGFR) wild-type sparing human epidermal growth factor receptor 2 (HER2) inhibitor. Based on in vitro data, the oxidative hepatic metabolism of zongertinib is principally driven by cytochrome P450 (CYP) 3A4/5. Therefore, zongertinib may be affected by strong CYP3A inducers, like carbamazepine.

View Article and Find Full Text PDF

Novel insights into cuproptosis in alcoholic liver disease using bioinformatics analysis and experimental validation.

Int Immunopharmacol

December 2024

Hepatology Diagnosis and Treatment Center & Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China. Electronic address:

Cuproptosis is crucial in the development of various liver diseases, yet its involvement in alcoholic liver disease (ALD) remains poorly understood. In this study, we screened cuproptosis-related genes (CRGs) regulating ALD and explored their potential molecular mechanisms. Bioinformatic methods were employed to screen CRGs in ALD, analyze their functional enrichment, signaling pathways, transcriptional regulation, relationship with the immune microenvironment and pathogenic genes, and corresponding single nucleotide polymorphism pathogenic regions, and construct transcription factor-miRNA-mRNA networks.

View Article and Find Full Text PDF

Identifying therapeutic target for prostate cancer: exploring Diosmetin as a CYP inhibitor.

Discov Oncol

December 2024

Department of Biological Sciences, Faculty of Science, King Abdulaziz University, 80203, Jeddah, Saudi Arabia.

Prostate cancer is a prevalent and highly heterogeneous malignancy that affects men globally. Despite the availability of various treatment targets, Cytochrome P450 (CYP) enzymes have gained significant attention due to their crucial role in metabolizing both endogenous and exogenous compounds. This study explores Diosmetin as a potential CYP antagonist for treating prostate cancer.

View Article and Find Full Text PDF

Absorption, single-dose and steady-state metabolism, excretion, and pharmacokinetics of adagrasib, a KRAS inhibitor.

Cancer Chemother Pharmacol

December 2024

Clinical Pharmacology and Nonclinical Development, Mirati Therapeutics Inc., San Diego, CA, USA.

Objective: This study investigated absorption, metabolism, and excretion of adagrasib after a single oral 600 mg dose (1 µCi [C]-adagrasib) in 7 healthy subjects and compared the metabolite profile to the profile at steady-state in 4 patients dosed at 600 mg twice daily.

Methods: Plasma, urine, and feces were collected post [C]-adagrasib administration and total radioactivity and pooled sample metabolite profiles were determined. Adagrasib pharmacokinetics were determined in plasma and urine.

View Article and Find Full Text PDF

Epoxy metabolites of linoleic acid promote the development of breast cancer via orchestrating PLEC/NFκB1/CXCL9-mediated tumor growth and metastasis.

Cell Death Dis

December 2024

CNTTI of College of Pharmacy and Department of Anesthesia of the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.

Breast cancer (BC) is a common malignant tumor in women and requires a comprehensive understanding of its pathogenesis for the development of new therapeutic strategies. Polyunsaturated fatty acids (PUFAs) metabolism-driven inflammation is a causative factor in cancer development. However, the function of PUFAs' metabolism in BC remains largely unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!