The effects of biochar feedstock, pyrolysis temperature, and application rate (1 and 2%) on the transport of two Escherichia coli isolates through a fine sand soil under water-saturated and partially saturated conditions were investigated in column experiments. Biochars from two feedstocks (poultry litter and pine chips) and pyrolyzed at two temperatures (350 and 700 °C) were evaluated. Both biochars pyrolyzed at 700 °C resulted in significant reductions in E. coli transport, with greater reductions observed with the pine chip biochars. For the low temperature biochars, increased transport was observed for the poultry litter biochar whereas reduced transport was observed for the pine chip biochar. In general, the effect of biochar application on E. coli transport was more pronounced in the unsaturated soils and for the 2% application rates. Large differences were also observed between the two isolates indicating that bacterial surface properties play a role in how biochar affects E. coli transport.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/es300797z | DOI Listing |
J Phys Chem B
January 2025
Department of Chemistry and Biochemistry, Miami University, 651 E. High Street, Oxford, Ohio 45056, United States.
Members of the KCNE family are accessory subunits that modulate voltage-gated potassium channels. One member, KCNE4, has been shown to inhibit the potassium ion current in these channels. However, little is known about the structure, dynamics, and mode of inhibition of KCNE4, likely due to challenges in overexpressing and purifying the protein.
View Article and Find Full Text PDFProtein translocation across cellular membranes is an essential and nano-scale dynamic process. In the bacterial cytoplasmic membrane, the core proteins in this process are a membrane protein complex, SecYEG, corresponding to the eukaryotic Sec61 complex, and a cytoplasmic protein, SecA ATPase. Despite more than three decades of extensive research on Sec proteins, from genetic experiments to cutting-edge single-molecule analyses, no study has visually demonstrated protein translocation.
View Article and Find Full Text PDFFood Res Int
January 2025
Key Laboratory of Product Packaging and Logistics, Packaging Engineering Institute, College of Packaging Engineering, Jinan University, Qianshan Road 206, Zhuhai 519070, Guangdong Province, China. Electronic address:
Hydrogel indicators promise to monitor food spoilage, but their poor mechanics can cause defects in transport. Herein, a novel zwitterionic double network (DN) hydrogel was developed by polymerizing arylamide and sulfobetaine methacrylate in an alginate-Ca system. This hydrogel exhibited enhanced mechanical properties, including a maximum 2087 % breaking elongation and 135 ± 12 kJ/m toughness, significantly outperforming the current zwitterionic DN hydrogels, which typically exhibit less than 1800 % breaking elongation, capable of supporting 150 g-136 times its own weight.
View Article and Find Full Text PDFMetab Eng
January 2025
Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA. Electronic address:
Amino acid auxotrophy refers to an organism's inability to synthesize one or more amino acids that are required for cell growth. In microbiome research, co-cultures of amino acid auxotrophs are often used to investigate metabolite cross-feeding interactions and model community dynamics. Thus far, it has been implicitly assumed that amino acids are mainly cross-fed between these auxotrophs.
View Article and Find Full Text PDFBiosens Bioelectron
December 2024
Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan; Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan. Electronic address:
Proteome microarray technology enables high-throughput analysis of protein interactions with all kinds of molecules. Wafer (6-inch) substrates offer a promising alternative to conventional glass (2.6 × 7.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!