[Dynamic pulse signal acquisition and processing].

Zhongguo Yi Liao Qi Xie Za Zhi

College of Electrical and Information Engineering, Lanzhou University of Technology, Lanzhou 730050, PR China.

Published: March 2012

In order to obtain and process pulse signal in real-time, the integer coefficients notch, low-pass filters and an envelope filtering method were designed in consideration of the characteristics of disturbances in pulse signal and then were verified by MATLAB. The pulse signal was processed on DSP in time domain and frequency domain after simplifying the programming. The pulse wave height and pulse rate were calculated in real-time, and the pulse signal's spectrum was illustrated by FFT. The results show that the filters can effectively suppress the interference in pulse signal, and the system can detect and analyze the dynamic pulse signal in real-time.

Download full-text PDF

Source

Publication Analysis

Top Keywords

pulse signal
24
pulse
8
signal real-time
8
signal
6
[dynamic pulse
4
signal acquisition
4
acquisition processing]
4
processing] order
4
order process
4
process pulse
4

Similar Publications

Photoacoustic tomography (PAT) enables non-invasive cross-sectional imaging of biological tissues, but it fails to map the spatial variation of speed-of-sound (SOS) within tissues. While SOS is intimately linked to density and elastic modulus of tissues, the imaging of SOS distribution serves as a complementary imaging modality to PAT. Moreover, an accurate SOS map can be leveraged to correct for PAT image degradation arising from acoustic heterogeneities.

View Article and Find Full Text PDF

Background: Stress is a significant risk factor for psychiatric disorders such as major depressive disorder (MDD) and panic disorder (PD). This highlights the need for advanced stress-monitoring technologies to improve treatment. Stress affects the autonomic nervous system, which can be evaluated via heart rate variability (HRV).

View Article and Find Full Text PDF

Objective: Pain is subjective, and self-reporting pain might be challenging. Studies conducted to detect pain using biological signals and real-time self-reports pain are limited. We evaluated the feasibility of collecting pain data on healthy females' menstrual pain and conducted preliminary analysis.

View Article and Find Full Text PDF

Recent empirical investigations reinforce the understanding of a profound interconnection between metabolic functions and Obstructive Sleep Apnea-hypopnea Syndrome (OSAHS). This study identifies distinctive miRNA signatures in OSAHS with Metabolic Syndrome (Mets) patients from healthy subjects, that could serve as diagnostic biomarkers or describe differential molecular mechanisms with potential therapeutic implications. In this study, OSAHS with MetS patients showed significantly higher Apnea Hyponea Index(AHI), but lower oxygen desaturation index(ODI 4/h) and minimum pulse oxygen saturation(SpO).

View Article and Find Full Text PDF

Wearable heart rate variability analysis system based on ionic conductive hydrogels.

Talanta

January 2025

Academy of Medical Engineering and Translational Medicine, Medical School, Tianjin University, Tianjin, 300072, China; School of Exercise and Health, Tianjin University of Sport, Tianjin, 300211, China. Electronic address:

Developing a wearable device that can continuously and reliably detect and evaluate heart rate variability (HRV) parameters is critical for the diabetic population with cardiac autonomic neuropathy (CAN). In this work, we proposed a zwitterionic conducting hydrogel that enabled a reliable and comfortable wearable device for the evaluation and detection of the autonomic nervous system (ANS). The hydrogel can achieve a strain of 2003 %, an electrical conductivity of 190 mS/m, and is capable of adhering to a variety of materials, including wood, plastic, and glass.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!