Glutaraldehyde-stabilized bovine pericardium is used for clinical application since 1970s because of its desirable features such as less immunogenicity and acceptable durability. However, a propensity for calcification is reported on account of glutaraldehyde treatment. In this study, commercially available glutaraldehyde cross-linked bovine pericardium was evaluated for its in vitro cytotoxic effect, macrophage activation, and in vivo toxic response in comparison to decellularized bovine pericardium. Glutaraldehyde-treated bovine pericardium and its extract were observed to be cytotoxic and it also caused significant inflammatory cytokine release from activated macrophages. Significant antibody response, calcification response, necrotic, and inflammatory response were noticed in glutaraldehyde-treated bovine pericardium in comparison to decellularized bovine pericardium in a rat subcutaneous implantation model. Glutaraldehyde-treated bovine pericardium also failed in acute systemic toxicity testing and intracutaneous irritation testing as per ISO 10993. With respect to healing and implant remodeling, total lack of host tissue incorporation and angiogenesis was noticed in glutaraldehyde-treated bovine pericardium compared to excellent host fibroblast incorporation and angiogenesis within the implant in decellularized bovine pericardium. In conclusion, using in vitro and in vivo techniques, this study has demonstrated that glutaraldehyde-treated bovine pericardium elicits toxic response compared to decellularized bovine pericardium which is not congenial for long-term implant performance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3339246 | PMC |
http://dx.doi.org/10.4103/0971-6580.94513 | DOI Listing |
Gen Thorac Cardiovasc Surg Cases
January 2025
Department of Cardiovascular Surgery, Osaka General Medical Center, Osaka, 558-8558, Japan.
Background: Left atrial dissection is a rare and occasionally fatal complication of cardiac surgery and is defined as the creation of a false chamber through a tear in the mitral valve annulus extending into the left atrial wall. Some patients are asymptomatic, while others present with various symptoms, such as chest pain, dyspnea, and even cardiac arrest. Although there is no established management for left atrial dissection, surgery should be considered in patients with hemodynamic disruption.
View Article and Find Full Text PDFCardiovasc Interv Ther
January 2025
Department of Cardiovascular Surgery, Tokyo Bay Urayasu Ichikawa Medical Center, Chiba, Japan.
JTCVS Open
December 2024
Division of Pediatric Cardiac Surgery, Department of Cardiothoracic Surgery, Stanford University, Palo Alto, Calif.
Objective: The study objective was to investigate the effect of free-edge length on valve performance in bicuspidization repair of congenitally diseased aortic valves.
Methods: In addition to a constructed unicuspid aortic valve disease model, 3 representative groups-free-edge length to aortic diameter ratio 1.2, 1.
ACS Biomater Sci Eng
January 2025
College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P.R. China.
Valvular heart disease (VHD) poses a significant threat to human health, and the transcatheter heart valve replacement (THVR) is the best treatment for severe VHD. Currently, the glutaraldehyde cross-linked commercial bioprosthetic heart valves (BHVs) remain the first choice for THVR. However, the cross-linking by glutaraldehyde exhibits several drawbacks, including calcification, inflammatory reactions, and difficult endothelialization, which limits the longevity and applicability of BHVs.
View Article and Find Full Text PDFHistol Histopathol
December 2024
Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy.
Research towards regenerative dentistry focused on developing scaffold materials whose high performance induces cell adhesion support and guides tissue growth. An early study investigated the proliferation abilities and attachment of human periodontal ligament fibroblasts (HPLFs) on two bovine pericardium membranes with different thicknesses, 0.2 mm and 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!