Background: Damage to venules in multiple sclerosis was first described decades ago. Today, ultrahigh magnetic field strength T2*-weighted magnetic resonance imaging (MRI) techniques depict very small cerebral veins in vivo with great anatomical detail.
Objective: We aimed to investigate alterations of periventricular small blood vessel appearance in relation to T2 lesion count and distribution in multiple sclerosis and clinically isolated syndrome in comparison with healthy control subjects at 7 Tesla MRI.
Methods: We investigated 38 patients (including 16 with early multiple sclerosis and seven with clinically isolated syndrome) and 22 matched healthy controls at 7 Tesla. The protocol included T2*-weighted Fast Low Angle Shot, and T2-weighted Turbo Inversion Recovery Magnitude sequences. We quantified periventricular venous density by a novel region-of-interest-based algorithm, expressing the ratio of 'veins per region-of-interest' as well as of 'periventricular vascular area'.
Results: Our study revealed significantly decreased venous density in multiple sclerosis patients compared with healthy controls. Venous alterations were already detectable in clinically isolated syndrome and early multiple sclerosis, although to a smaller extent. Venous density correlated inversely with periventricular and whole-brain T2 lesion count. Furthermore, we found no indication for cerebral venous congestion in multiple sclerosis.
Conclusion: High spatially resolving anatomical T2*-weighted MRI revealed vascular alterations in early stages of multiple sclerosis, presumably as a part of widespread haemodynamic and metabolic alterations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/1352458512451941 | DOI Listing |
Int J Surg
January 2025
Department of Orthopedics, Civil Aviation General Hospital, Beijing, China.
Background: Dural arteriovenous fistulas (DAVFs) pose a significant health threat owing to their high misdiagnosis rate. Case reports suggest that DAVFs or related acute events may follow medication use; however, drug-related risk factors remain unclear. In clinical practice, the concomitant use of multiple drugs for therapy is known as "polypharmacy situations," further increasing the risk of drug-induced DAVF.
View Article and Find Full Text PDFCureus
December 2024
Basic Sciences, Hawler Medical University, Erbil, IRQ.
Background Multiple sclerosis is a chronic, progressive, disabling disease associated with a high rate of infection, evidence of chronic inflammation, and a high mortality rate. Abnormalities of serum cytokines and changes in the activity of inflammatory cells were associated with relapsing-remitting multiple sclerosis (MS-RR). This study aims to introduce new inflammatory ratios derived from hematological and lipid indices as discriminators of T-helper (Th)-1/Th-2 activity in RR-MS.
View Article and Find Full Text PDFDemyelination, or the loss of myelin in the central nervous system (CNS) is a hallmark of multiple sclerosis (MS) and occurs in various forms of CNS injury and neurodegenerative diseases. The regeneration of myelin, or remyelination, occurs spontaneously following demyelination. The lysophosphatidylcholine (LPC)-induced focal demyelination model enables investigations into the mechanisms of remyelination, providing insight into the molecular basis underlying an evolving remyelinating microenvironment over a tractable time course.
View Article and Find Full Text PDFOligodendroglial lineage cells (OLCs) are critical for neuronal support functions, including myelination and remyelination. Emerging evidence reveals their active roles in neuroinflammation, particularly in conditions like Multiple Sclerosis (MS). This study explores the inflammatory translatome of OLCs during the early onset of experimental autoimmune encephalomyelitis (EAE), an established MS model.
View Article and Find Full Text PDFEpstein-Barr Virus (EBV) infects over 95% of the world's population and is the most common cause of infectious mononucleosis (IM). Epidemiologic studies have linked EBV with certain cancers or autoimmune conditions, including multiple sclerosis (MS). Recent studies suggest that molecular mimicry between EBV proteins, particularly EBV nuclear antigen 1 (EBNA-1), and self-proteins is a plausible mechanism through which EBV infection may contribute to the development of autoimmune disorders.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!