We compare results from single crystal X-ray diffraction and FTIR spectroscopy to elucidate the nature of hydrogen bonding in β-9-anthracene carboxylic acid (β-9AC, C(15)H(10)O(2)). The crystallographic studies indicate a disorder for the protons in the cyclic hydrogen bond. This disorder allows the determination of the energy difference between two proton sites along the hydrogen bond. The temperature dependent Fourier transform infrared spectroscopy (FTIR) underpins the crystallographic results. The combination of both methods allows the estimation of a one-dimensional potential curve describing the OH-stretching motion. The dynamical properties of the proton transfer along the hydrogen bond are extracted from this potential. The work presented here has profound implication on future studies of photochemical dynamics of crystalline β-9AC, which can deliver a deeper understanding of the mechanism of photochemical driven molecular machines and the optical and electronic properties of molecular organic semiconductors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c2cp40216e | DOI Listing |
Biomacromolecules
January 2025
Department of Chemistry and Material Science, Langfang Normal University, Langfang, Hebei 065000, P.R. China.
Green separation of protein (e.g., bovine serum albumin (BSA)) by low-melting mixture solvents (LoMMSs) depends on the underlying mechanism between BSA and LoMMSs.
View Article and Find Full Text PDFChem Sci
December 2024
Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China Hefei Anhui 230026 China
The packing of organic molecular crystals is often dominated by weak non-covalent interactions, making their rearrangement under external stimuli challenging to understand. We investigate a pressure-induced single-crystal-to-single-crystal (SCSC) transformation between two polymorphs of 2,4,5-triiodo-1-imidazole using machine learning potentials. This process involves the rearrangement of halogen and hydrogen bonds combined with proton transfer within a complex solid-state system.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
School of Physics and Electronics, Shandong Normal University, Jinan 250014, China.
Addressing the frequent emergence of SARS-CoV-2 mutant strains requires therapeutic approaches with innovative neutralization mechanisms. The targeting of multivalent nanobodies can enhance potency and reduce the risk of viral escape, positioning them as promising drug candidates. Here, the synergistic mechanisms of the two types of nanobodies are investigated deeply.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China.
The strategy of designing efficient room-temperature phosphorescence (RTP) emitters based on hydrogen bond interactions has attracted great attention in recent years. However, the regulation mechanism of the hydrogen bond on the RTP property remains unclear, and corresponding theoretical investigations are highly desired. Herein, the structure-property relationship and the internal mechanism of the hydrogen bond effect in regulating the RTP property are studied through the combination of quantum mechanics and molecular mechanics methods (QM/MM) coupled with the thermal vibration correlation function method.
View Article and Find Full Text PDFSmall
January 2025
School of Mechanical Engineering, Guangxi University, Nanning, 530004, P. R. China.
Flexible zinc-air batteries (FZABs) present a promising solution for the next generation of power sources in wearable electronics, owing to their high energy density, cost-effectiveness, and safety. However, solid-state electrolytes for FZABs continue to face challenges related to rapid water loss and low ionic conductivity. In this study, a hydrophilic and stable tetramethylguanidine-modified graphene oxide as an additive, which is incorporated into sodium polyacrylate to develop a high-performance gel polymer electrolyte (GPE), is designed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!