Animal construction allows organisms to cope with environmental variations but the physiological costs of such behaviour are still poorly understood. The aim of the present study was to measure the physiological cost of construction behaviour through the oxidative balance that is known to affect the ability of organs to function, stimulates senescence processes and ultimately impacts the fitness of the organism. We used larvae of caddisfly, Limnephilus rhombicus, by experimentally modifying the effort associated with case building. Larvae that were forced to build a new case showed a significant increase in both total antioxidant capacity and the specific activity of superoxide dismutase 48 and 72 h, respectively, after the initiation of the reconstruction. These results strongly suggest that the larval construction behaviour triggered the production of reactive oxygen species, but their effects were reversed 7 days after the reconstruction. In the animals that were forced to build a new case, oxidative stress appeared to be mitigated by a network of antioxidant defences because no oxidative damage was observed in proteins compared with the control larvae. At the adult stage, while longevity was not sex dependent and was not affected by the treatment, body mass and body size of adult males from the reconstruction treatment were significantly lower than the control values. This unexpected sex effect together with data on oxidative stress highlights the difficulty of determining the physiological cost associated with energy-demanding behaviours, implying a consideration of both their energetic and non-energetic components is required.

Download full-text PDF

Source
http://dx.doi.org/10.1242/jeb.071142DOI Listing

Publication Analysis

Top Keywords

physiological cost
8
construction behaviour
8
forced build
8
build case
8
oxidative stress
8
proximal costs
4
case
4
costs case
4
construction
4
case construction
4

Similar Publications

Periodic Light Modulations for Low-Cost Wide-Field Imaging of Luminescence Kinetics Under Ambient Light.

Adv Sci (Weinh)

January 2025

PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 24, rue Lhomond, Paris, 75005, France.

Imaging luminescence kinetics is invaluable in many fields, including biology and chemistry. However, the luminescence lifetime of most photo-activated states is in the low ns-µs range and its measurement requires adding costly image intensifiers to cameras to access the fast phenomena present. Here, the Rectified Imaging under Optical Modulation (RIOM) and Heterodyne Imaging under Optical Modulation (HIOM) protocols make this possible with standard low-cost cameras only, even under ambient light.

View Article and Find Full Text PDF

Antimicrobial peptides (AMPs) are renowned for their potent bacteriostatic activity and safety, rendering them invaluable in animal husbandry, food safety, and medicine. Despite their potential, the physiological toxicity of AMPs to host cells significantly hampers their biosynthetic production. This study presents a novel approach for the biosynthesis of the antimicrobial peptide Kiadin by engineering a DAMP4-DPS-Kiadin fusion protein to mitigate host cell toxicity and achieve high-level expression.

View Article and Find Full Text PDF

An unprecedented double photoexcitation mechanism for photoswitching in conjugated-dienes to trigger physiological processes for photopharmacology.

Org Biomol Chem

January 2025

Laboratory of Advanced Computation and Theory for Materials and Chemistry, Department of Chemistry, National Institute of Technology Warangal (NITW), Warangal, Telangana-506004, India.

The optical control of physiological processes with high precision using photoswitches is an emerging strategy for non-invasive diagnosis and therapies, providing innovative solutions to complex biomedical challenges. Light-responsive cyclic conjugated-dienes (cCDs) have long been recognized for their 4π-photocyclization; however, photoswitching behaviour in medium-sized cCDs has recently been reported, representing a pioneering discovery in the field. Reinforced by previous experimental evidence corroborating the Woodward-Hoffmann rules, this report provides insight into the origin of the exotic dual photoexcitation mechanism devised to achieve thermo-reversible photoswitching in large cCDs with cyclodeca-1,3-diene as a prototype.

View Article and Find Full Text PDF

Although we have a good understanding of how phenotypic plasticity evolves in response to abiotic environments, we know comparatively less about responses to biotic interactions. We experimentally tested how competition and mutualism affected trait and plasticity evolution of pairwise communities of genetically modified brewer's yeast. We quantified evolutionary changes in growth rate, resource use efficiency (RUE), and their plasticity in strains evolving alone, with a competitor, and with a mutualist.

View Article and Find Full Text PDF

Transforming Feather Meal Into a High-Performance Feed for Broilers.

Vet Med Sci

January 2025

Department of Industrial Management, Faculty of Humanities, University of Tehran, Kish International Campus, Tehran, Iran.

Background: The poultry industry faces challenges with the high cost and environmental impact of Soybean meal. Feather meal, a byproduct with low digestibility due to its keratin content, is a potential alternative. Recent biotechnological advances, including enzymatic and bacterial hydrolysis, have enhanced its digestibility and nutritional value.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!