Background: Lateral column lengthening (LCL) has become an accepted procedure for the operative treatment of the flexible flatfoot deformity. Hindfoot arthrodesis via a calcaneocuboid distraction arthrodesis (CCDA) has been considered a less favourable surgical option than the anterior open wedge calcaneal distraction osteotomy (ACDO), as CCDA has been associated with reduced hindfoot joint motion postoperatively. The ankle and subtalar joint ranges of motion were measured in patients who underwent an ACDO or CCDA procedure for flatfoot deformity.
Methods: CT scanning was performed with the foot in extreme positions in five ACDO and five CCDA patients. A bone segmentation and registration technique for the tibia, talus and calcaneus was applied to the CT images. Finite helical axis (FHA) rotations representing the range of motion of the joints were calculated for the motion between opposite extreme foot positions of the tibia and the calcaneus relative to the talus.
Results: The maximum mean FHA rotation of the ankle joint (for extreme dorsiflexion to extreme plantarflexion) after ACDO was 52.2 degrees ± 12.4 degrees and after CCDA 49.0 degrees ± 12.0 degrees. Subtalar joint maximum mean FHA rotation (for extreme eversion to extreme inversion) following ACDO was 22.8 degrees ± 8.6 degrees, and following CCDA 24.4 degrees ± 7.6 degrees.
Conclusion: An accurate CT-based technique was used to assess the range of motion of the ankle and subtalar joints following two lateral column lengthening procedures for flatfoot deformity. Comparable results with a considerable amount of variance were found for the range of motion following the ACDO and CCDA procedures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3113/FAI.2012.0386 | DOI Listing |
Phys Rev Lett
December 2024
Laboratoire De Physique de l'École Normale Supérieure, ENS, PSL, CNRS, Sorbonne Université, Université de Paris, 24 rue Lhomond, 75005 Paris, France.
Electric quadrupole traps are a leading technology for suspending charged objects ranging in size from single protons to atomic and molecular ions, and even to nano- and micron-sized bodies. If the levitated objects' charge distribution contains multipoles, the time-dependent trapping fields can significantly impact its rotational motion. Here, we experimentally observe the transition from librational motion to a regime where a microparticle rotates in sync with the trap drive.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Rehabilitation Sciences, Ghent University, Ghent, Belgium.
Background: Increasing one's walking speed is an important goal in post-stroke gait rehabilitation. Insufficient arm swing in people post-stroke might limit their ability to propel the body forward and increase walking speed.
Purpose: To investigate the speed-dependent changes (and their contributing factors) in the arm swing of persons post-stroke.
Eur Phys J E Soft Matter
January 2025
Center for Life Nano Science@La Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy.
Understanding the values and origin of fundamental physical constants, one of the grandest challenges in modern science, has been discussed in particle physics, astronomy and cosmology. More recently, it was realized that fundamental constants have a biofriendly window set by life processes involving motion and flow. This window is related to intrinsic fluid properties such as energy and length scales in condensed matter set by fundamental constants.
View Article and Find Full Text PDFObjective: This study investigated the effects of a single dose injection of mesenchymal stem cells (MSCs) under ultrasound guidance for knee osteoarthritis (KOA).
Design: The study included 30 subjects in the intervention group, who received the MSC injection and 27 in the control group who received triamcinolone. Various outcome measures, including pain levels, range of motion (ROM), and MRI parameters, were evaluated before the intervention and at different time points after treatment.
Phys Rev Lett
December 2024
Chan Zuckerberg Biohub-San Francisco, 499 Illinois Street, San Francisco, California 94158, USA.
Influenza A viruses (IAVs) must navigate through a dense extracellular mucus to infect airway epithelial cells. The mucous layer, composed of glycosylated biopolymers (mucins), presents sialic acid that binds to ligands on the viral envelope and can be irreversibly cleaved by viral enzymes. It was recently discovered that filamentous IAVs exhibit directed persistent motion along their long axis on sialic acid-coated surfaces.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!