Attenuation effects can be significant in photoacoustic tomography since the generated pressure signals are broadband, and ignoring them may lead to image artifacts and blurring. La Rivière et al. [Opt. Lett. 31(6), pp. 781-783, (2006)] had previously derived a method for modeling the attenuation effect and correcting for it in the image reconstruction. This was done by relating the ideal, unattenuated pressure signals to the attenuated pressure signals via an integral operator. We derive an integral operator relating the attenuated pressure signals to the absorbed optical energy for a planar measurement geometry. The matrix operator relating the two quantities is a function of the temporal frequency, attenuation coefficient and the two-dimensional spatial frequency. We perform singular-value decomposition (SVD) of this integral operator to study the problem further. We find that the smallest singular values correspond to wavelet-like eigenvectors in which most of the energy is concentrated at times corresponding to greater depths in tissue. This allows us to characterize the ill-posedness of recovering the absorbed optical energy distribution at different depths in an attenuating medium. This integral equation can be inverted using standard SVD methods, and the initial pressure distribution can be recovered. We conduct simulations and derive an algorithm for image reconstruction using SVD for a planar measurement geometry. We also study the noise and resolution properties of this image-reconstruction method.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1117/1.JBO.17.6.061204 | DOI Listing |
Sensors (Basel)
December 2024
Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada.
Monitoring cerebral oxygenation and metabolism, using a combination of invasive and non-invasive sensors, is vital due to frequent disruptions in hemodynamic regulation across various diseases. These sensors generate continuous high-frequency data streams, including intracranial pressure (ICP) and cerebral perfusion pressure (CPP), providing real-time insights into cerebral function. Analyzing these signals is crucial for understanding complex brain processes, identifying subtle patterns, and detecting anomalies.
View Article and Find Full Text PDFSensors (Basel)
December 2024
UFZ Helmholtz Centre for Environmental Research, Department Monitoring and Exploration Technologies, Permoserstraße 15, 04318 Leipzig, Germany.
Ion mobility spectrometry is successfully used as a sensor technology for different applications. A feature of this method is that characteristic ion mobility spectra are obtained for each measurement rather than a sum signal. The spectra result from the different drift velocities of ions in a drift tube at atmospheric pressure.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Hangzhou Institute of Technology, Xidian University, Hangzhou 311200, China.
A highly sensitive sulfur dioxide (SO) photoacoustic gas sensor was developed for the sulfur hexafluoride (SF) decomposition detection in electric power systems by using a novel 266 nm low-cost high-power solid-state pulse laser and a high -factor differential photoacoustic cell. The ultraviolet (UV) pulse laser is based on a passive -switching technology with a high output power of 28 mW. The photoacoustic signal was normalized to the laser power to solve the fluctuation of the photoacoustic signal due to the power instability of the UV laser.
View Article and Find Full Text PDFToxics
December 2024
Shanxi Key Laboratory of Coal-Based Emerging Pollutant Identification and Risk Control, Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China.
As one of the most common air pollutants, fine particulate matter (PM) increases the risk of diseases in various systems, including the urinary system. In the present study, we exposed male and female C57BL/6J mice to PM for 8 weeks. Examination of renal function indices, including creatinine (CRE), blood urea nitrogen (BUN), uric acid (UA), and urinary microalbumin, indicated that the kidneys of female mice, not male mice, underwent early renal injury, exhibiting glomerular hyperfiltration.
View Article and Find Full Text PDFMicroorganisms
December 2024
Advanced Wound Care Research & Development, Convatec, Deeside Industrial Park, Deeside CH5 2NU, UK.
Nitric oxide (NO) is a free radical of the human innate immune response to invading pathogens. NO, produced by nitric oxide synthases (NOSs), is used by the immune system to kill microorganisms encapsulated within phagosomes via protein and DNA disruption. Owing to its ability to disperse biofilm-bound microorganisms, penetrate the biofilm matrix, and act as a signal molecule, NO may also be effective as an antibiofilm agent.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!