We demonstrate a novel epitaxial layer-by-layer growth on upconverting NaYF(4) nanocrystals (NCs) utilizing Ostwald ripening dynamics tunable both in thickness and composition. Injection of small sacrificial NCs (SNCs) as shell precursors into larger core NCs results in the rapid dissolution of the SNCs and their deposition onto the larger core NCs to yield core-shell structured NCs. Exploiting this NC size dependent dissolution/growth, the shell thickness can be controlled either by manipulating the number of SNCs injected or by successive injection of SNCs. In either of these approaches, the NCs self-focus from an initial bimodal distribution to a unimodal distribution (σ <5%) of core-shell NCs. The successive injection approach facilitates layer-by-layer epitaxial growth without the need for tedious multiple reactions for generating tunable shell thickness, and does not require any control over the injection rate of the SNCs, as is the case for shell growth by precursor injection.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja302717uDOI Listing

Publication Analysis

Top Keywords

ostwald ripening
8
growth upconverting
8
larger core
8
core ncs
8
ncs
6
self-focusing ostwald
4
ripening strategy
4
strategy layer-by-layer
4
layer-by-layer epitaxial
4
epitaxial growth
4

Similar Publications

Article Synopsis
  • Interest in organic solar cells (OSCs) is increasing, with device performance linked to the nanomorphology of bulk heterojunctions (BHJs) developed during drying and post-treatment processes.
  • This study explores the impact of thermal annealing (TA) on the DRCN5T:PCBM blend using phase field simulations to understand how post-treatment affects BHJ morphology.
  • Simulation results reveal that the BHJ's morphological evolution during TA is primarily driven by the dissolution of smaller, unstable DRCN5T crystals and the anisotropic growth of larger crystals.
View Article and Find Full Text PDF

Carbon Defects as Highly Active Sites for Gold Detection and Recovery.

Angew Chem Int Ed Engl

January 2025

Shanghai Normal University, Chemistry, No. 100, Guilin Road, 200234, Shanghai, CHINA.

The use of precious metals (PMs) in many areas, such as printed circuit boards, catalysts, and target drugs, is increasing due to their unique physical and chemical properties, but their recovery remains a great challenge in terms of zero-valent PMs as final product. We report a highly hydrophilic carbon dot (CD) as reductant (electron donor), the defects in CD served as efficient active sites for zero-valent PMs recovery with an electron-donating capacity is ~1.7 mmol g-1.

View Article and Find Full Text PDF

The earliest named stromatolite Cryptozoon Hall, 1884 (Late Cambrian, ca. 490 Ma, eastern New York State), was recently re-interpreted as an interlayered microbial mat and non-spiculate (keratosan) sponge deposit. This "classic stromatolite" is prominent in a fundamental debate concerning the significance or even existence of non-spiculate sponges in carbonate rocks from the Neoproterozoic (Tonian) onwards.

View Article and Find Full Text PDF

Purpose: This study investigates the impact of various mixing parameters and surfactant combinations on the physical characteristics of nanoemulsions produced using high-speed homogenization. Nanoemulsions are explored for their capacity to enhance transdermal drug delivery in pharmaceutical and cosmetic contexts.

Methods: Employing a standard high-speed homogenizer typical in the cosmetic industry, we tested different combinations of Polysorbate (Tween®) and Sorbitan ester (Span®) surfactants under single and intermittent process configurations.

View Article and Find Full Text PDF

Synthesis of triangular lignin photonic crystal nanoparticles: Investigating solvent effects and dialysis optimization.

Int J Biol Macromol

December 2024

Composites and Nanocomposites Center, Moroccan Foundation for Advanced Science, Innovation and Research, Rabat Design Center, Rue Mohamed El Jazouli, Madinat El Irfane, Rabat 10100, Morocco; Mohammed VI Polytechnic University, Lot 660 Hay Moulay Rachid, 43150 Ben Guerir, Morocco. Electronic address:

Article Synopsis
  • Researchers have developed a new method to create triangular lignin nanoparticles (LNPs), improving on traditional spherical shapes, for potential use in optical applications.
  • This green technique employs solvent shifting and acid precipitation, allowing for controlled structural changes in the nanoparticles.
  • The resulting LNPs exhibit good hydrophobic properties, excellent UV-blocking efficiency, and long-term stability in aqueous suspensions, making them promising for applications like sunscreen.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!