Objective: To screen the asymmetric dimethyl arginines (ADMA)-containing proteins which could combine with protein arginine methyltransferase 1 (PRMT1).
Methods: Western blot was adopted to identify the expression of PRMT1 and the proteins with ADMA in glioma cell lines and normal brain tissues, and then to detect the changes of ADMA level after knock-down of PRMT1 with RNAi transfection in U87MG cells. Co-Immunoprecipitation (Co-IP), western blot, and sliver staining were employed to screen the candidate binding proteins of PRMT1. Then liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to identify the binding proteins of PRMT1.
Results: The expression of PRMT1 and some levels of ADMA were higher in glioma cell lines than in normal brain tissues. After knocking down PRMT1, some ADMA levels were found declined. After screening the binding proteins of PRMT1 with Co-IP and LC-MS/MS, 26 candidate binding proteins were identified. Among them, 6 candidate proteins had higher ions scores (> 38) and bioinformation analysis predicted that SEC23-IP, ANKHD1-EIF4EBP3 protein, and 1-phosphatidylinositol-3-phosphate 5-kinase isoform 2 had possible methylated aginine sites.
Conclusions: The high expression of PRMT1 in glioma may induce the change of ADMA levels. Altogether 26 candidate proteins were identified, which contain ADMA and specifically bind with PRMT1.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s1001-9294(12)60014-5 | DOI Listing |
J Am Chem Soc
January 2025
Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, Kowloon 999077, China.
Heterogeneous ice nucleation is a widespread phenomenon in nature. Despite extensive research on ice nucleation near biological antifreeze proteins, a probe for ice nucleation and growth processes at the atomic level is still lacking. Herein, we present simulation evidence of the heterogeneous ice nucleation process on the ice-binding surface (IBS) of the antifreeze protein (TmAFP).
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
January 2025
Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan.
Purpose: To investigate the effect of Rho-associated protein kinase (ROCK) inhibitor Y27632 on bioenergetic capacity and resilience of corneal endothelial cells (CECs) under metabolic stress.
Methods: Bovine CECs (BCECs) were treated with Y27632 and subjected to bioenergetic profiling using the Seahorse XFp Analyzer. The effects on adenosine triphosphate (ATP) production through oxidative phosphorylation and glycolysis were measured.
Biochemistry
January 2025
Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru 560012, India.
Eukaryotic Initiation Factor 4 (eIF4) is a group of factors that activates mRNA for translation and recruit 43S preinitiation complex (PIC) to the mRNA 5' end, forming the 48S PIC. The eIF4 factors include mRNA 5' cap-binding protein eIF4E, ATP-dependent RNA helicase eIF4A, and scaffold protein eIF4G, which anchors eIF4A and eIF4E. Another eIF4 factor, eIF4B, stimulates the RNA helicase activity of eIF4A and facilitates mRNA recruitment.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Max Perutz Labs, Vienna Biocenter Campus, Vienna 1030, Austria.
RNA G-quadruplexes (rG4s), the four-stranded structures formed by guanine-rich RNA sequences, are recognized by regions in RNA-binding proteins (RBPs) that are enriched in arginine-glycine repeats (RGG motifs). Importantly, arginine and glycine are encoded by guanine-rich codons, suggesting that some RGG motifs may both be encoded by and interact with rG4s in autogenous messenger RNAs (mRNAs). By analyzing transcriptome-wide rG4 datasets, we show that hundreds of RGG motifs in humans are at least partly encoded by rG4s, with an increased incidence for longer RGG motifs (~10 or more residues).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637.
Many proteins form paralogous multimers-molecular complexes in which evolutionarily related proteins are arranged into specific quaternary structures. Little is known about the mechanisms by which they acquired their stoichiometry (the number of total subunits in the complex) and heterospecificity (the preference of subunits for their paralogs rather than other copies of the same protein). Here, we use ancestral protein reconstruction and biochemical experiments to study historical increases in stoichiometry and specificity during the evolution of vertebrate hemoglobin (Hb), an αβ heterotetramer that evolved from a homodimeric ancestor after a gene duplication.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!