Chronic kidney disease (CKD) and end-stage renal disease (ESRD) are currently considered as major health burdens. Notably, CKD can be regarded as an interesting clinical model of accelerated cardiovascular disease (CVD) and ageing, which offers exciting new perspectives and challenges for pharmaceutical drug development. However, during the last decades, therapeutic advances to slow down the progression of CKD and reduce CVD risk have largely failed due to several possible reasons including (i) the lack of profound understanding of the pathophysiology of chronic renal damage and its associated CVD; (ii) an inadequate characterization of molecular mechanisms of currently approved therapies such as renin-angiotensin-aldosterone-system (RAAS) blockade; (iii) the unclear biochemical property needs required for novel therapeutic approaches; (iv) the missing quantity and quality of clinical trials in the nephrology field; and, most importantly, (v) the absence of prognostic renal biomarkers that reflect the severity of the structural organ damage and predict ESRD as well as CVD mortality. There is clearly an insufficient understanding of why a significant proportion of CKD patients progress to ESRD and/or die from CVD whereas others rather remain stable. In this article, we urge renal researchers to develop novel experimental and clinical tools for rational and translational drug discovery. Identification of individualized determinants of CKD progression and/or premature CVD will enable personalized medicine and lead to novel innovative nephro- and/or cardioprotective pharmacological treatment in these high-risk patients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/ndt/gfs270 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!