Haploid genomes greater than 25,000 Mb are rare, within the animals only the lungfish and some of the salamanders and crustaceans are known to have genomes this large. There is very little data on the structure of genomes this size. It is known, however, that for animal genomes up to 3,000 Mb, there is in general a good correlation between genome size and the percent of the genome composed of repetitive sequence and that this repetitive component is highly dynamic. In this study, we sampled the Australian lungfish genome using three mini-genomic libraries and found that with very little sequence, the results converged on an estimate of 40% of the genome being composed of recognizable transposable elements (TEs), chiefly from the CR1 and L2 long interspersed nuclear element clades. We further characterized the CR1 and L2 elements in the lungfish genome and show that although most CR1 elements probably represent recent amplifications, the L2 elements are more diverse and are more likely the result of a series of amplifications. We suggest that our sampling method has probably underestimated the recognizable TE content. However, on the basis of the most likely sources of error, we suggest that this very large genome is not largely composed of recently amplified, undetected TEs but may instead include a large component of older degenerate TEs. Based on these estimates, and on Thomson's (Thomson K. 1972. An attempt to reconstruct evolutionary changes in the cellular DNA content of lungfish. J Exp Zool. 180:363-372) inference that in the lineage leading to the extant Australian lungfish, there was massive increase in genome size between 350 and 200 mya, after which the size of the genome changed little, we speculate that the very large Australian lungfish genome may be the result of a massive amplification of TEs followed by a long period with a very low rate of sequence removal and some ongoing TE activity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/molbev/mss159 | DOI Listing |
J Environ Manage
December 2024
Australian Rivers Institute, Griffith University, Nathan, Queensland, 4111, Australia.
Nature
October 2024
Department of Biology, University of Konstanz, Konstanz, Germany.
PLoS One
May 2024
Environomics Future Science Platform, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Indian Ocean Marine Research Centre, Crawley, Western Australia, Australia.
Epigenetic ageing in a human context, has been used to better understand the relationship between age and factors such as lifestyle and genetics. In an ecological setting, it has been used to predict the age of individual animals for wildlife management. Despite the importance of epigenetic ageing in a range of research fields, the assays to measure epigenetic ageing are either expensive on a large scale or complex.
View Article and Find Full Text PDFMol Ecol
March 2024
Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.
The Australian lungfish is a primitive and endangered representative of the subclass Dipnoi. The distribution of this species is limited to south-east Queensland, with some populations considered endemic and others possibly descending from translocations in the late nineteenth century shortly after European discovery. Attempts to resolve the historical distribution of this species have met with conflicting results based on descriptive genetic studies.
View Article and Find Full Text PDFJ Morphol
January 2024
School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, Australia.
The Australian lungfish, Neoceratodus forsteri (Krefft 1870), is the sole extant member of the Ceratodontidae within the Dipnoi, a small order of sarcopterygian (lobe-finned) fishes, that is thought to be the earliest branching species of extant lungfishes, having changed little over the last 100 million years. To extend studies on anatomical adaptations associated with the fish-tetrapod transition, the ultrastructure of the cornea and iris is investigated using light and electron (transmission and scanning) microscopy to investigate structure-function relationships and compare these to other vertebrate corneas (other fishes and tetrapods). In contrast to previous studies, the cornea is found to have only three main components, comprising an epithelium with its basement membrane, a stroma with a Bowman's layer and an endothelium, and is not split into a dermal (secondary) spectacle and a scleral cornea.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!