The angioplasty procedure is associated with a release of numerous factors triggering the local inflammatory reaction in vascular wall and leading thus to the restenosis. In this study, we hypothesize that the low-energy laser irradiation may exert beneficial effect by limiting this process. A group of 101 subjects (75 men and 26 women, mean age: 59.1 ± 10.3) treated with percutaneous coronary intervention (PCI), were recruited to this study. While 52 patients (40 men and 12 women) were subjected to the intravascular low-energy laser irradiation (λ=808 nm) of dilated lesion during the PCI, the remaining patients (35 men and 14 women) constituted the control group. The levels of interleukin 1β, 6 and 10 (IL 1β, IL 6 and IL 10) were measured immediately before the procedure, and then at the 6th, 12th hour as well as after 1 month following the PCI. Significantly lower levels of IL 1β and IL 6 in the irradiated group during each analysis after the procedure were observed. Moreover, significantly lower IL 10 level in irradiated group within 6 and 12 hours after PCI was observed. Irradiation of the lesion with low-energy laser radiation during the PCI procedure results in a decrease in the levels of pro-inflammatory IL 1β and IL 6 as well as in an increase in the levels of anti-inflammatory IL 10, which may result in decreased risk for restenosis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3637891 | PMC |
http://dx.doi.org/10.1007/s10103-012-1142-z | DOI Listing |
Materials (Basel)
January 2025
High Speed 3D Printing Research Center, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Rd., Taipei 106, Taiwan.
Selective laser sintering (SLS) is one of the prominent methods of polymer additive manufacturing (AM). A low-power laser source is used to directly melt and sinter polymer material into the desired shape. This study focuses on the utilization of the low-power laser SLS system to successfully manufacture metallic components through the development of a metal-polymer composite material.
View Article and Find Full Text PDFLangmuir
January 2025
College of Transportation, Ludong University, No.186, Middle Hongqi Road, Zhifu District, Yantai 264025, Shandong, China.
In recent years, flexible pressure sensors have played an increasingly important role in human health monitoring. Inspired by traditional papermaking techniques, we have developed a highly flexible, low-cost, and ecofriendly flexible pressure sensor using shredded paper fibers as the substrate. By combining the properties of laser-induced graphene with the structure of paper fibers, we have improved the internal structure of pressure-sensitive paper and designed a conical surface microstructure, providing new insights into nanomaterial engineering.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123 China; College of Pharmaceutical Sciences, Soochow University, Suzhou 215123 China. Electronic address:
Phototherapy including photothermal therapy (PTT) and photodynamic therapy (PDT) is widely used for cancer treatment because of its non-invasiveness, spatiotemporal controllability, and low side effects. However, the PTT and PDT capabilities of photosensitizers (PSs) compete so it's still a crucial challenge to simultaneously enhance the PDT and PTT capabilities of PSs. In this work, donor-π-acceptor (D-π-A)-based boron dipyrromethene (BODIPY) dyes were developed via molecular engineering and applied for enhanced phototherapy of triple-negative breast cancer.
View Article and Find Full Text PDFHua Xi Kou Qiang Yi Xue Za Zhi
February 2025
State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine &Dept. of Trauma and Plastic Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
Objectives: This study aims to evaluate the clinical effect of low-energy semiconductor laser treatment on the promotion of wound healing after maxillofacial fracture surgery.
Methods: A prospective randomized controlled study was conducted. Patients with maxillofacial fractures who were hospitalized in the Department of Trauma and Plastic Surgery, West China Hospital of Stomatology, Sichuan University, from August 2021 to June 2023 were selected as the study subjects and randomly divided into experimental and control groups.
Small
January 2025
SUNAG Laboratory, Institute of Physics, Sachivalaya Marg, Bhubaneswar, 751 005, India.
Understanding the resistive switching (RS) behavior of oxide-based memory devices at nanoscale is crucial for advancement of high-integration density in-memory computing platforms. This study explores a comprehensive growth parameter space to address the RS behavior of pulsed-laser-deposited substoichiometric TiO (TiO) thin films in search of tailored nanoscale memristors with low-power consumption and high stability. Conductive-atomic-force-microscopy-based measurements facilitate deciphering the switching behavior at nanoscale, providing a direct avenue to understand the microstructure-property relationships.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!