Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This paper presents a framework to introduce spatial and anatomical priors in SVM for brain image analysis based on regularization operators. A notion of proximity based on prior anatomical knowledge between the image points is defined by a graph (e.g., brain connectivity graph) or a metric (e.g., Fisher metric on statistical manifolds). A regularization operator is then defined from the graph Laplacian, in the discrete case, or from the Laplace-Beltrami operator, in the continuous case. The regularization operator is then introduced into the SVM, which exponentially penalizes high-frequency components with respect to the graph or to the metric and thus constrains the classification function to be smooth with respect to the prior. It yields a new SVM optimization problem whose kernel is a heat kernel on graphs or on manifolds. We then present different types of priors and provide efficient computations of the Gram matrix. The proposed framework is finally applied to the classification of brain Magnetic Resonance (MR) images (based on Gray Matter (GM) concentration maps and cortical thickness measures) from 137 patients with Alzheimer's Disease (AD) and 162 elderly controls. The results demonstrate that the proposed classifier generates less-noisy and consequently more interpretable feature maps with high classification performances.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TPAMI.2012.142 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!