Thymoquinone (TQ) is a bioactive component derived from the medicinal plant Nigella sativa. Recent studies reported that TQ exhibited cytotoxic effects in several cancer cell lines. Currently, no information in the literature is found concerning its mechanisms and cytotoxicity on neuroblastoma cells. In this study, the cytotoxicity of TQ in mouse neuroblastoma cells (Neuro-2a) was investigated. Our results showed that TQ significantly reduced viability of Neuro-2a cells than normal neuronal cells. Apoptosis induction by TQ was confirmed by DAPI and AO/PI staining. TQ triggered the apoptotic pathway, which was characterized by increased Bax/Bcl-2 ratio. TQ significantly increased the expression of pro-apoptotic protein Bax, whereas decreased the expression of anti-apoptotic protein Bcl-2, which leads to the release of cytochrome c from mitochondria into the cytoplasm. Moreover, TQ treatment directs the activation of caspase-3 followed by the cleavage of poly(ADP-ribose) polymerase (PARP). Interestingly, we also observed that TQ down-regulated caspase inhibitor X-linked inhibitor of apoptosis protein (XIAP). These results indicate that TQ induces apoptosis via caspase-3 activation with down-regulation of XIAP in Neuro-2a cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.toxlet.2012.06.011 | DOI Listing |
Molecules
January 2025
Neuroscience and Signalling Group, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal.
Alzheimer's disease is a challenge in modern healthcare due to its complex etiology and increasing prevalence. Despite advances, further understanding of Alzheimer's disease pathophysiology is needed, particularly the role of Aβ neurotoxic peptide. Fourier transform infrared spectroscopy (FTIR) has shown potential as a screening tool for several pathologies, including Alzheimer's disease.
View Article and Find Full Text PDFAdv Compos Hybrid Mater
January 2025
J. Mike Walker '66 Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843 USA.
Dosage tolerance is one of the translational challenges of using metformin (Met) in brain therapeutics. This paper presents metal-organic framework (MOF)-74-Mg nanocarriers (NCs) for intranasal (IN) delivery of brain-specific agents with a prolonged release time. We confirmed their excellent biocompatibility (5 mg/mL) and intrinsic fluorescence properties (370/500 nm excitation/emission peak) in Neuro-2A cells.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Medical Neuroscience, SUSTech Center for Pain Medicine, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China.
Ubiquitin-proteasomal degradation of K/Cl cotransporter 2 (KCC2) in the ventral posteromedial nucleus (VPM) has been demonstrated to serve as a common mechanism by which the brain emerges from anesthesia and regains consciousness. Ubiquitin-proteasomal degradation of KCC2 during anesthesia is driven by E3 ligase Fbxl4. However, the mechanism by which ubiquitinated KCC2 is targeted to the proteasome has not been elucidated.
View Article and Find Full Text PDFFitoterapia
January 2025
Heidelberg University, Institute of Pharmacy and Molecular Biotechnology, INF 364, D-69221 Heidelberg, Germany.
Parkinson's disease (PD) is the second most common neurodegenerative disorder in the elderly, currently with no cure. Its mechanisms are not well understood, however α-synuclein protein aggregation plays a central role in the pathogenesis of PD, leading to neurodegeneration. We demonstrated that in a PD model dietary in Caenorhabditis elegans treatment with an extract from the rhizome of Canna coccinea decreased the accumulation of α-synuclein.
View Article and Find Full Text PDFMethods Mol Biol
December 2024
Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France.
Maistero-2 is a novel, non-toxic cholesterol-binding protein derived from an edible mushroom Grifola frondosa mRNA. Maistero-2 specifically binds to lipid membranes containing 3-hydroxy sterols with a lower cholesterol concentration threshold than cholesterol-binding domain 4 (D4) of perfringolysin O (PFO) and anthrolysin O (ALO). Maistero-2 binding is particularly sensitive to the size and conformation of the A-, B-, and D-ring of sterols but not very sensitive to modifications of the isooctyl side chain commonly found in phytosterols.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!