Zygote arrest (Zar) proteins are crucial for early embryonic development, but their molecular mechanism of action is unknown. The Translational Control Sequence (TCS) in the 3' untranslated region (UTR) of the maternal mRNA, Wee1, mediates translational repression in immature Xenopus oocytes and translational activation in mature oocytes, but the protein that binds to the TCS and mediates translational control is not known. Here we show that Xenopus laevis Zar2 (encoded by zar2) binds to the TCS in maternal Wee1 mRNA and represses translation in immature oocytes. Using yeast 3 hybrid assays and electrophoretic mobility shift assays, Zar2 was shown to bind specifically to the TCS in the Wee1 3'UTR. RNA binding required the presence of Zn(2+) and conserved cysteines in the C-terminal domain, suggesting that Zar2 contains a zinc finger. Consistent with regulating maternal mRNAs, Zar2 was present throughout oogenesis, and endogenous Zar2 co-immunoprecipitated endogenous Wee1 mRNA from immature oocytes, demonstrating the physiological significance of the protein-RNA interaction. Interestingly, Zar2 levels decreased during oocyte maturation. Dual luciferase reporter tethered assays showed that Zar2 repressed translation in immature oocytes. Translational repression was relieved during oocyte maturation and this coincided with degradation of Zar2 during maturation. This is the first report of a molecular function of zygote arrest proteins. These data show that Zar2 contains a zinc finger and is a trans-acting factor for the TCS in maternal mRNAs in immature Xenopus oocytes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3423596 | PMC |
http://dx.doi.org/10.1016/j.ydbio.2012.06.012 | DOI Listing |
Zygote
December 2024
Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine Center, Women and Children's Hospital of Chongqing Medical University, Chongqing, China.
This study aimed to demonstrate the utilization value of 1PN embryos. The 1PN zygotes collected from December 2021 to September 2022 were included in this study. The embryo development, the pronuclear characteristics, and the genetic constitutions were investigated.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China. Electronic address:
Developmental abnormalities are more common in somatic cell nuclear transfer (SCNT) embryos due to epigenetic barriers that occur during the maternal-to-zygotic transition (MZT). N6-methyladenosine (m6A) is an RNA epigenetic modification that plays a significant role in numerous biological processes. However, the relationship between m6A and SCNT embryonic development is largely unexplored.
View Article and Find Full Text PDFJ Assist Reprod Genet
November 2024
IVIRMA Global Research Alliance, GENERA, Clinica Valle Giulia, Rome, Italy.
Purpose: Recent evidence showed that the phase between pronuclear fading and the first cleavage is a perilous bridge connecting the zygote and the embryo. Indeed, delay in the short interval between pronuclear breakdown (PNBD) and the first cytokinesis may result in chromosome segregation errors. We tested the hypothesis that delays in this final phase of fertilization are associated with a detrimental impact on embryo development.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
College of Animal Science & Technology, Guangxi University, Nanning, Guangxi 530004, China; Guangxi Key Laboratory of Animal Breeding & Disease Control and Prevention, Guangxi University, Nanning, Guangxi 530004, China. Electronic address:
Alternative splicing (AS) is a pivotal posttranscriptional regulatory mechanism that is involved in embryonic development. However, the roles of AS in specific developmental events, especially the zygotic genome activation (ZGA) of porcine early embryos, remain unclear. In this study, we demonstrated that alternative splicing events (ASEs) were most prevalent in mammalian embryos during ZGA and that skipped exons were the predominant splicing pattern.
View Article and Find Full Text PDFReprod Biol
December 2024
Department of Animal Reproduction, Anatomy and Genomics, Faculty of Animal Science, University of Agriculture in Krakow, Mickiewicza 24/28, 30-059 Krakow, Poland.
The efficacy of in vitro embryo production (IVEP) in equines is relatively limited compared to other species due to the lack of a reliable superovulation technique, limited availability of cumulus oocyte complexes (COCs), low in vitro oocyte maturation (IVM) and fertilization rates. Extracellular vesicles (EVs), which are nanoparticles involved in intercellular signaling in the ovarian environment, have shown potential as supplements to improve oocyte development during IVM. This study tested the hypothesis that EVs from small (< 20 mm) ovarian follicles could enhance fertilization rates in mares.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!