Drug nanocarrier clearance by the immune system must be minimized to achieve targeted delivery to pathological tissues. There is considerable interest in finding in vitro tests that can predict in vivo clearance outcomes. In this work, we produce nanocarriers with dense PEG layers resulting from block copolymer-directed assembly during rapid precipitation. Nanocarriers are formed using block copolymers with hydrophobic blocks of polystyrene (PS), poly-ε-caprolactone (PCL), poly-D,L-lactide (PLA), or poly-lactide-co-glycolide (PLGA), and hydrophilic blocks of polyethylene glycol (PEG) with molecular weights from 1 kg/mol to 9 kg/mol. Nanocarriers with paclitaxel prodrugs are evaluated in vivo in Foxn1(nu) mice to determine relative rates of clearance. The amount of nanocarrier in circulation after 4h varies from 10% to 85% of initial dose, depending on the block copolymer. In vitro complement activation assays are conducted to correlate in vivo circulation to the protection of the nanocarrier surface from complement binding and activation. Guidelines for optimizing block copolymer structure to maximize circulation of nanocarriers formed by rapid precipitation and directed assembly are proposed, relating to the relative sizes of the hydrophilic and hydrophobic blocks, the hydrophobicity of the anchoring block, the absolute size of the PEG block, and polymer crystallinity. The in vitro results distinguish between the poorly circulating PEG(5k)-PCL(9 k) and the better circulating nanocarriers, but could not rank the better circulating nanocarriers in order of circulation time. Analysis of PEG surface packing on monodisperse 200 nm latex spheres indicates that the size of the hydrophobic PCL, PS, and PLA blocks are correlated with the PEG blob size. Suggestions for next steps for in vitro measurements are made.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3416956PMC
http://dx.doi.org/10.1016/j.jconrel.2012.06.020DOI Listing

Publication Analysis

Top Keywords

block copolymer
12
vivo clearance
8
rapid precipitation
8
nanocarriers formed
8
hydrophobic blocks
8
better circulating
8
circulating nanocarriers
8
nanocarriers
6
block
6
peg
5

Similar Publications

An organomagnesium complex containing an imino-phosphanamidinate ligand was found to be a competent catalyst for the ROP of -LA and ε-CL as well as their copolymerization sequential addition of monomers, resulting in the formation of PCL--PLA diblock copolymer. The polymers obtained were characterized by H, C, DOSY NMR, DSC, TGA, POM, and SEM.

View Article and Find Full Text PDF

Single-molecule resolution of the conformation of polymers and dendrimers with solid-state nanopores.

Talanta

January 2025

Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences & Chongqing School, University of Chinese Academy of Science, Chongqing, 400714, PR China. Electronic address:

Polymers and dendrimers are macromolecules, possessing unique and intriguing characteristics, that are widely applied in self-assembled functional materials, green catalysis, drug delivery and sensing devices. Traditional approaches for the structural characterization of polymers and dendrimers involve DLS, GPC, NMR, IR and TG, which provide their physiochemical features and ensemble information, whereas their unimolecular conformation and dispersion also are key features allowing to understand their transporting profile in confined ionic nanochannels. This work demonstrates the nanopore approach for the determination of charged homopolymers, neutral block copolymer and dendrimers under distinct bias potentials and pH conditions.

View Article and Find Full Text PDF

Protection of Enzymes Against Heat Inactivation by Enzyme-Polymer Conjugates.

Macromol Rapid Commun

January 2025

State Key Lab of Polymer Materials Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China.

Along with the quick advancements in enzyme technology, inactivation has emerged as the key barrier for enzymes to be fully utilized as biocatalysts. Here, a novel strategy is presented for the preservation of the enzymatic activity even after heat treatment by grafting enzymes onto the thermal responsive block copolymer via an activated ester-amine reaction. A new water-soluble activated ester monomer, acrylic polyethylene glycol (PEG) functionalized 3-fluoro-4-hydroxybenzoate is synthesized.

View Article and Find Full Text PDF

Due to the escalating threat of the pathogens' capability of quick adaptation to antibiotics, finding new alternatives is crucial. Although antimicrobial peptides (AMPs) are highly potent and effective, their therapeutic use is limited' as they are prone to enzymatic degradation, are cytotoxic and have low retention. To overcome these challenges, we investigate the complexation of the cationic AMP colistin with diblock copolymers poly(ethylene oxide)--poly(methacrylic acid) (PEO--PMAA) forming colistin-complex coacervate core micelles (colistin-C3Ms).

View Article and Find Full Text PDF

Melt electrowriting of amorphous solid dispersions: Influence of drug and plasticizer on rheology and printing performance.

Int J Pharm

January 2025

Soft Matter Chemistry, Department of Chemistry, and Helsinki Institute of Sustainability Science, Faculty of Science, University of Helsinki, PB55 00014 Helsinki, Finland. Electronic address:

Drug loaded microfiber scaffolds have potential for sublingual drug delivery due to their fast dissolution time and tunable porosity. Such microfiber scaffolds can be prepared by melt electrowriting (MEW), wherein a polymer melt is electrostatically drawn out of a syringe onto a computer controlled moving collector. The fabrication of such scaffolds via MEW has previously been shown for a polymer with a glass transition temperature (T) just above room temperature, making handling challenging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!