Cytochromes c are heme proteins that require multiple maturation components, such as heme lyases, for cofactor incorporation. Saccharomyces cerevisiae has two heme lyases that are specific for apocytochromes c (CCHL) or c(1) (CC(1)HL). CCHL can covalently attach heme b groups to apocytochrome c substrates of eukaryotic but not prokaryotic origin. Besides their conserved Cys-Xxx-Xxx-Cys-His heme-binding motifs, the amino-terminal regions of apocytochrome c substrates appear to be important for CCHL function. In this study, we show for the first time that only two amino acid changes in the amino-terminal region of the non-CCHL substrate apocytochrome c(2) from Rhodobacter capsulatus are necessary and sufficient for efficient holocytochrome c formation by CCHL. This finding led us to propose a consensus sequence located at the amino-terminus of apocytochromes c, and critical for substrate recognition and heme ligation by CCHL.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4420188PMC
http://dx.doi.org/10.1016/j.bbrc.2012.06.088DOI Listing

Publication Analysis

Top Keywords

saccharomyces cerevisiae
8
heme lyases
8
apocytochrome substrates
8
heme
6
cchl
5
engineering prokaryotic
4
apocytochrome
4
prokaryotic apocytochrome
4
apocytochrome efficient
4
efficient substrate
4

Similar Publications

Mitochondria are central to myriad biochemical processes, and thus even their moderate impairment could have drastic cellular consequences if not rectified. Here, to explore cellular strategies for surmounting mitochondrial stress, we conducted a series of chemical and genetic perturbations to Saccharomyces cerevisiae and analysed the cellular responses using deep multiomic mass spectrometry profiling. We discovered that mobilization of lipid droplet triacylglycerol stores was necessary for strains to mount a successful recovery response.

View Article and Find Full Text PDF

Microbial isolates from sugar crop processing facilities were tested for sensitivity to several industrial antimicrobial agents to determine optimal dosing. Hydritreat 2216 showed broad spectrum activity against all bacterial isolates as well as Saccharomyces cerevisiae. Sodium hypochlorite showed broad spectrum activity against all isolates, but at much higher effective concentrations.

View Article and Find Full Text PDF

Metagenomic and metabolomic profiling analyses to unravel the formation mechanism of n-propanol during the first and second round of Jiangxiangxing Baijiu fermentation.

Food Res Int

January 2025

College of Bioengineering, Tianjin University of Science and Technology, Thirteenth Street, Binhai New District, Tianjin 300457, China; Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Thirteenth Street, Binhai New District, Tianjin 300457, China; Liquor Making Biological Technology and Application of Key Laboratory of Sichuan Province, Sichuan, China. Electronic address:

N-propanol is one of the higher alcohols, a moderate amount of n-propanol is beneficial for the harmony of the liquor body, whereas excessive or repeated intake will lead to discomfort and pose significant harm to human health. In actual production process of Jiangxiangxing Baijiu, the n-propanol content of the base baijiu in first round (FR) is far higher than that of second round (SR). Nevertheless, the formation mechanism and the key n-propanol producing microbials remain unclear and this limits the quality control of baijiu fermentation.

View Article and Find Full Text PDF

Defining serine tRNA knockout as a strategy for effective repression of gene expression in organisms with a recoded genome.

Nucleic Acids Res

January 2025

Division of Pharmacoengineering and Molecular Pharmaceutics, The University of North Carolina at Chapel Hill, 125 Mason Farm Rd. Chapel Hill, NC 27599, USA.

Whole genome codon compression-the reassignment of all instances of a specific codon to synonymous codons-can generate organisms capable of tolerating knockout of otherwise essential transfer RNAs (tRNAs). As a result, such knockout strains enable numerous unique applications, such as high-efficiency production of DNA encoding extremely toxic genes or non-canonical proteins. However, achieving stringent control over protein expression in these organisms remains challenging, particularly with proteins where incomplete repression results in deleterious phenotypes.

View Article and Find Full Text PDF

Corrigendum to "Complete biosynthesis of the potential medicine icaritin by engineered Saccharomyces cerevisiae and Escherichia coli" [Sci. Bull. 66(18) (2021) 1906-1916].

Sci Bull (Beijing)

December 2024

CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!