Polyethylenimine-capped platinum nanoparticles (PEI-capped Pt NPs) are synthesized by photoreduction and qualified as a component for electrostatic layer-by-layer assembly and subsequent electrocatalysis. The PEI-capped Pt NPs are characterized for size and charge using scanning force microscopy, transmission electron microscopy, dynamic light scattering and zetapotential. Well-defined multilayers are produced via thin film electrostatic assembly of PEI-capped Pt NPs with the conducting polymer: poly(3,4-ethylenedioxythiophene):poly(p-styrenesulfonate) [(PEDOT:PSS)(-)Na(+)]. The composite thin films are subsequently characterized by ultraviolet-visible spectroscopy, scanning force microscopy, inductively coupled plasma mass spectroscopy and thermogravimetric analysis. The layer-by-layer deposition process was found to proceed in a controlled manner which permits the fabrication of stable and uniform multilayer thin films. [PEI-capped Pt NPs/(PEDOT:PSS)] multilayers were found to be an active catalyst coating for the oxidation of methanol and a 20 bilayer film proceeds with a stable level of catalyst activity for over 1000 oxidation cycles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/am300639z | DOI Listing |
Nanotechnology
July 2022
Department of Virology-University of KwaZulu-Natal and National Health Laboratory Service, Durban, South Africa.
Active targeting is a promising approach for the treatment of viral infections. In particular, site-specific formulations for the treatment of HIV infection may overcome challenges associated with current ARV regimens. In this study we explored active targeting by synthesizing a gold nanoparticle construct decorated with an anti-CD4 cyclic peptide.
View Article and Find Full Text PDFJ Nanobiotechnology
March 2020
CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China.
Background: To effectively applied nanomaterials (NMs) in medicine, one of the top priorities is to address a better understanding of the possible sub-organ transfer, clearance routes, and potential toxicity of the NMs in the liver and kidney.
Results: Here we explored how the surface chemistry of polyethylene glycol (PEG), chitosan (CS), and polyethylenimine (PEI) capped gold nanoparticles (GNPs) governs their sub-organ biodistribution, transfer, and clearance profiles in the liver and kidney after intravenous injection in mice. The PEG-GNPs maintained dispersion properties in vivo, facilitating passage through the liver sinusoidal endothelium and Disse space, and were captured by hepatocytes and eliminated via the hepatobiliary route.
ACS Omega
December 2017
Laboratory of Interfaces and Nanosized Systems, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary.
During the synthesis of gold nanoparticle (NP) assemblies, the interfacial charge and hydrophobicity of the primary particles play a distinguished role. In the present article, we demonstrate that the association of poly(ethyleneimine) (PEI) capped gold NPs with sodium alkyl sulfates provide a powerful route for the manipulation of these interfacial properties. Dynamic light-scattering, electrophoretic mobility, UV-vis-near-infrared spectroscopy, nanoparticle tracking analysis, and transmission electron microscopy measurements were used to characterize the PEI/surfactant/gold nanoassemblies.
View Article and Find Full Text PDFSci Rep
May 2017
Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel.
We present the synthesis of new composite materials based on copper nanoparticles (Cu NPs) deposited onto montmorillonite (MK10) and quartz sand, for degradation of atrazine, in the context of an advanced oxidation process (AOP). The synthesis involves a first step in which polyethylenimine (PEI) capped Cu NPs (PEI_Cu NPs) are prepared, and then deposited onto, separately, MK10 and sand, through a solvent impregnation method. The resulting products are characterized in detail; the copper is found to exist as a mixture of copper (I, II) oxide.
View Article and Find Full Text PDFACS Appl Mater Interfaces
July 2012
Department of Engineering Technology, Western Washington University, 516 High St., Bellingham, Washington 98225, United States.
Polyethylenimine-capped platinum nanoparticles (PEI-capped Pt NPs) are synthesized by photoreduction and qualified as a component for electrostatic layer-by-layer assembly and subsequent electrocatalysis. The PEI-capped Pt NPs are characterized for size and charge using scanning force microscopy, transmission electron microscopy, dynamic light scattering and zetapotential. Well-defined multilayers are produced via thin film electrostatic assembly of PEI-capped Pt NPs with the conducting polymer: poly(3,4-ethylenedioxythiophene):poly(p-styrenesulfonate) [(PEDOT:PSS)(-)Na(+)].
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!