The synthesis of metal complexes has vastly increased the scope of research for many scientists during the two last decades. Among these compounds, artificial tyrosinases, catecholases, proteases, and nucleases are some of the most studied due to their importance as modern tools in the fields of medicine, scientific research, and industry. Transition metals such as Zn(2+), Cu(2+), Fe(3+), Co(3+), Ni(2+), and lanthanide ions are the most commonly used. Among these ions, copper complexes have been the focus of the majority of studies thanks to their significant activity in comparison with other ions. Studies of copper-based tyrosinases, catecholases, and nucleases have revealed some of the overarching factors affecting reactions of all three types, which has led to improved activity and efficiency for all. Key factors include proper core-core distance, (Cu⋯Cu distance 2.90-2.99 Å), suitable solvent, and ligands with proper hydrophobic structure and geometry. In the present investigation, we review and introduce the proposed mechanisms and the kinetically effective factors of natural catecholase, tyrosinase, and nuclease and their Cu-based synthetic mimics.

Download full-text PDF

Source
http://dx.doi.org/10.1080/07391102.2012.689704DOI Listing

Publication Analysis

Top Keywords

tyrosinases catecholases
8
short review
4
review structure-function
4
structure-function relationship
4
relationship artificial
4
artificial catecholase/tyrosinase
4
catecholase/tyrosinase nuclease
4
nuclease activities
4
activities cu-complexes
4
cu-complexes synthesis
4

Similar Publications

This paper presents the synthesis process of a ligand known as 2-(naphthalene-1-yl)-1H-phenanthro[9,10-d]imidazole (NIP) and its metal complex with zinc (II), denoted as FA-128. The structural validation of FA-128 is accomplished through single-crystal X-ray diffraction (XRD). To explore the biological implications, FA-128's interaction with BSA is investigated.

View Article and Find Full Text PDF

Tea contains various antioxidant compounds, including polyphenols, catechins, theaflavins, theasinensins, and flavonoids. Among these, epigallocatechin gallate (EGCG) is a crucial antioxidant recognized for its potent bioactivity. This study presents the synthesis of a highly selective Cu-PyC NH-based metal-organic framework (MOF) nanozyme that exhibits catecholase-like activity to assess the antioxidant capabilities of EGCG.

View Article and Find Full Text PDF

Sources and Applications of Tyrosinase in Life Sciences.

Curr Pharm Biotechnol

July 2024

Department of Pharmaceutical Chemistry, Bharati Vidyapeeth College of Pharmacy, Kolhapur, Maharashtra, 416013, India.

Background: Tyrosinase, often recognized as polyphenol oxidase, plays a pivotal role as an enzyme in catalyzing the formation of melanin-a complex process involving the oxidation of monophenols and o-diphenols.

Objective: Tyrosinase functions as a monooxygenase, facilitating the o-hydroxylation of monophenols to generate the corresponding catechols, as well as catalyzing the oxidation of monophenols to form the corresponding o-quinones, exhibiting diphenolase or catecholase activity. This versatile enzymatic capability is not limited to specific organisms but is found across various sources, including bacteria, fungi, plants, and mammals.

View Article and Find Full Text PDF

Fabrication of nanozyme with catecholase-like catalytic activity faces the great challenge of merging outstanding activity with low cost as well as simple, rapid, and low-energy-consumed production, restricting its industrial applications. Herein, an inexpensive yet robust nanozyme (i.e.

View Article and Find Full Text PDF

The influence of thioether-substituted ligands in dicopper(II) complexes: Enhancing oxidation and biological activities.

J Inorg Biochem

July 2024

Departamento de Química, Universidade Federal de Santa Catarina, UFSC, CEP 88040-900 Florianópolis, SC, Brazil. Electronic address:

This paper describes the synthesis, structural analysis, as well as the magnetic and spectroscopic characterizations of three new dicopper(II) complexes with dinucleating phenol-based ligands containing different thioether donor substituents: aromatic (1), aliphatic (2) or thiophene (3). Temperature-dependent magnetometry reveals the presence of antiferromagnetic coupling for 1 and 3 (J = -2.27 cm and -5.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!