A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3100

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Identification of feedback loops in neural networks based on multi-step Granger causality. | LitMetric

AI Article Synopsis

  • Feedback circuits play a key role in biological networks and are essential for understanding synchronized bursting behaviors in neural dynamics, making their identification through time-series measurements crucial.
  • The Multi-Step Granger Causality Method (MSGCM) was created to effectively identify feedback loops in biological networks, overcoming limitations of previous methods by demonstrating bi-directional multi-step causality between network nodes.
  • MSGCM was validated using synthetic neural models and lab-cultured rat neural networks, revealing numerous feedback loops associated with synchronized oscillations, highlighting their significance in neural network dynamics.

Article Abstract

Motivation: Feedback circuits are crucial network motifs, ubiquitously found in many intra- and inter-cellular regulatory networks, and also act as basic building blocks for inducing synchronized bursting behaviors in neural network dynamics. Therefore, the system-level identification of feedback circuits using time-series measurements is critical to understand the underlying regulatory mechanism of synchronized bursting behaviors.

Results: Multi-Step Granger Causality Method (MSGCM) was developed to identify feedback loops embedded in biological networks using time-series experimental measurements. Based on multivariate time-series analysis, MSGCM used a modified Wald test to infer the existence of multi-step Granger causality between a pair of network nodes. A significant bi-directional multi-step Granger causality between two nodes indicated the existence of a feedback loop. This new identification method resolved the drawback of the previous non-causal impulse response component method which was only applicable to networks containing no co-regulatory forward path. MSGCM also significantly improved the ratio of correct identification of feedback loops. In this study, the MSGCM was testified using synthetic pulsed neural network models and also in vitro cultured rat neural networks using multi-electrode array. As a result, we found a large number of feedback loops in the in vitro cultured neural networks with apparent synchronized oscillation, indicating a close relationship between synchronized oscillatory bursting behavior and underlying feedback loops. The MSGCM is an efficient method to investigate feedback loops embedded in in vitro cultured neural networks. The identified feedback loop motifs are considered as an important design principle responsible for the synchronized bursting behavior in neural networks.

Download full-text PDF

Source
http://dx.doi.org/10.1093/bioinformatics/bts354DOI Listing

Publication Analysis

Top Keywords

feedback loops
24
neural networks
20
multi-step granger
16
granger causality
16
identification feedback
12
synchronized bursting
12
vitro cultured
12
feedback
9
networks
8
feedback circuits
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!