Aim: Right ventricular (RV) failure due to pressure or volume overload is a major risk factor for early mortality in congenital heart disease and pulmonary hypertension, but currently treatments are lacking. We aimed to demonstrate that the phosphodiesterase 5A inhibitor sildenafil can prevent adverse remodelling and improve function in chronic abnormal RV overload, independent from effects on the pulmonary vasculature.
Methods And Results: In rat models of either pressure or volume overload, we performed pressure-volume studies to measure haemodynamic effects and voluntary exercise testing as clinical outcome after 4 weeks of sildenafil (or vehicle) administration. In the pressure-loaded right ventricle, sildenafil enhanced contractility [end-systolic elastance (mmHg/mL) 247 ± 68 vs.155 ± 71, sildenafil vs. vehicle, P < 0.05], prevented RV dilatation [end-diastolic volume (μL) 733 ± 50 vs. 874 ± 39, P < 0.05], reduced wall stress [peak wall stress (mmHg) 323 ± 46 vs. 492 ± 62, P < 0.05], and partially preserved exercise tolerance [running distance (%) -33 ± 15 vs. -62 ± 12, P < 0.05]. Protein kinase A was not activated by sildenafil and thus did not mediate the observed effects. In contrast, protein kinase G-1 was activated by sildenafil, but hypertrophy was not inhibited. Importantly, sildenafil did not prevent diastolic dysfunction, whereas RV fibrosis appeared to be increased in sildenafil-treated rats. In the volume-loaded right ventricle, sildenafil treatment did not show any beneficial effects.
Conclusion: We demonstrate sildenafil to have beneficial, afterload-independent effects on the pressure-loaded right ventricle, but not on the volume-loaded right ventricle. These results indicate that sildenafil may offer a specific treatment for the pressure-loaded right ventricle, although persistent diastolic dysfunction and RV fibrosis could be of concern.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/eurjhf/hfs094 | DOI Listing |
Am J Respir Cell Mol Biol
August 2024
The Hospital for Sick Children, Cardiology, Toronto, Ontario, Canada;
Right ventricular (RV) fibrosis is associated with RV dysfunction in a variety of RV pressure-loading conditions where RV mechanical stress is increased, but the underlying mechanisms driving RV fibrosis are incompletely understood. In pulmonary and cardiovascular diseases characterized by elevated mechanical stress and transforming growth factor - beta-1 (TGF-β1) signaling, myocardin-related transcription factor A (MRTF-A) is a mechanosensitive protein critical to driving myofibroblast transition and fibrosis. Here we investigated whether MRTF-A inhibition improves RV pro-fibrotic remodeling and function in response to a pulmonary artery banding (PAB) model of RV pressure-loading.
View Article and Find Full Text PDFBackground: The right ventricle (RV) is at risk in patients with complex congenital heart disease involving right-sided obstructive lesions. We have shown that capillary rarefaction occurs early in the pressure-loaded RV. Here we test the hypothesis that microRNA (miR)-34a, which is induced in RV hypertrophy and RV failure (RVF), blocks the hypoxia-inducible factor-1α-vascular endothelial growth factor (VEGF) axis, leading to the attenuated angiogenic response and increased susceptibility to RV failure.
View Article and Find Full Text PDFEchocardiography
February 2022
Department of Pediatrics and Adolescent Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, People's Republic of China.
We performed a systematic review of the literature on the assessment of subpulmonary and systemic right ventricular (RV) functional reserve during pharmacological and exercise stress in congenital heart patients and patients with pulmonary arterial hypertension (PAH). Literature search was conducted using PubMed, EMBASE, and MEDLINE from their inception up to August 2020. Of 913 records identified, 56 studies with a total of 1730 patients were included.
View Article and Find Full Text PDFEur Heart J Case Rep
January 2021
Department of Radiology, University Hospitals Leuven, Herestraat 49, B-3000 Leuven, Belgium.
Background: Right ventricular outflow tract obstruction in patients with congenital heart disease is usually assessed using echocardiographic peak instantaneous gradient at rest. Since right ventricular outflow tract obstruction may change during exercise (dynamic right ventricular outflow tract obstruction), we present a case emphasizing the potential use of exercise cardiac magnetic resonance imaging (CMR).
Case Summary: We discuss a 15-year-old patient with repaired mid-ventricular sub-pulmonary stenosis type double-chambered right ventricle causing right ventricular outflow tract obstruction and symptoms on exertion.
J Vis Exp
July 2020
Division of Pediatric Cardiology, Department of Pediatrics, University of Alberta.
Heart conditions in which the tricuspid valve (TV) faces either increased volume or pressure stressors are associated with premature valve failure. Mechanistic studies to improve our understanding of the underlying pathophysiology responsible for the development of premature TV failure are lacking. Due to the inability to conduct these studies in humans, an animal model is required.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!