Delayed cell cycle progression in selenoprotein W-depleted cells is regulated by a mitogen-activated protein kinase kinase 4-p38/c-Jun NH2-terminal kinase-p53 pathway.

J Biol Chem

Western Human Nutrition Research Center, United States Department of Agriculture, Agricultural Research Service, University of California, Davis, California 95616, USA.

Published: August 2012

Selenoprotein W (SEPW1) is a ubiquitous, highly conserved thioredoxin-like protein whose depletion causes a transient p53- and p21(Cip1)-dependent G(1)-phase cell cycle arrest in breast and prostate epithelial cells. SEPW1 depletion increases phosphorylation of Ser-33 in p53, which is associated with decreased p53 ubiquitination and stabilization of p53. We report here that delayed cell cycle progression, Ser-33 phosphorylation, and p53 nuclear accumulation from SEPW1 depletion require mitogen-activated protein kinase kinase 4 (MKK4). Silencing MKK4 rescued G(1) arrest, Ser-33 phosphorylation, and nuclear accumulation of p53 induced by SEPW1 depletion, but silencing MKK3, MKK6, or MKK7 did not. SEPW1 silencing did not change the phosphorylation state of MKK4 but increased total MKK4 protein. Silencing p38γ, p38δ, or JNK2 partially rescued G(1) arrest from SEPW1 silencing, suggesting they signal downstream from MKK4. These results imply that SEPW1 silencing increases MKK4, which activates p38γ, p38δ, and JNK2 to phosphorylate p53 on Ser-33 and cause a transient G(1) arrest.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3431642PMC
http://dx.doi.org/10.1074/jbc.M112.346593DOI Listing

Publication Analysis

Top Keywords

cell cycle
12
sepw1 depletion
12
sepw1 silencing
12
delayed cell
8
cycle progression
8
mitogen-activated protein
8
protein kinase
8
kinase kinase
8
ser-33 phosphorylation
8
nuclear accumulation
8

Similar Publications

The study aimed to analyze the long-term outcomes of [Lu]Lu-DOTAGA.FAPi dimer therapy in individuals diagnosed with radioiodine-resistant (RAI-R) follicular cell-derived thyroid cancer. In this retrospective study, 73 patients with RAI-R follicular thyroid carcinoma who had undergone multiple lines of previous treatments were included.

View Article and Find Full Text PDF

Mitochondrial retrograde signaling (MRS) pathways relay the functional status of mitochondria to elicit homeostatic or adaptive changes in nuclear gene expression. Budding yeast have "intergenomic signaling" pathways that sense the amount of mitochondrial DNA (mtDNA) independently of oxidative phosphorylation (OXPHOS), the primary function of genes encoded by mtDNA. However, MRS pathways that sense the amount of mtDNA in mammalian cells remain poorly understood.

View Article and Find Full Text PDF

Background: Photodynamic therapy (PDT) is a noninvasive cancer treatment that works by using light to stimulate the production of excessive cytotoxic reactive oxygen species (ROS), which effectively eliminates tumor cells. However, the therapeutic effects of PDT are often limited by tumor hypoxia, which prevents effective tumor cell elimination. The oxygen (O) consumption during PDT can further exacerbate hypoxia, leading to post-treatment adverse events.

View Article and Find Full Text PDF

Virus budding is a critical step in the replication cycle of enveloped viruses, closely linked to viral spread, disease progression, and clinical outcomes. The budding of many enveloped RNA viruses is facilitated by the hijacking of the host endosomal sorting complex required for transport (ESCRT) proteins through viral late domains. These late domains are essential for progeny virus production and are highly conserved, making the interaction between late domains and host ESCRT proteins a potential target for the development of antiviral therapeutics.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) ranks among the most prevalent types of cancer globally. Zinc finger protein 169 (ZNF169) holds significant importance as a transcription factor, yet its precise function in HCC remains to be elucidated. This study aims to examine the clinical importance, biological functions, and molecular pathways associated with ZNF169 in the development of HCC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!