In Escherichia coli, tetracycline prevents translation. When subject to tetracycline, E. coli express TetA to pump it out by a mechanism that is sensitive, while fairly independent of cellular metabolism. We constructed a target gene, PtetA-mRFP1-96BS, with a 96 MS2-GFP binding site array in a single-copy BAC vector, whose expression is controlled by the tetA promoter. We measured the in vivo kinetics of production of individual RNA molecules of the target gene as a function of inducer concentration and temperature. From the distributions of intervals between transcription events, we find that RNA production by PtetA is a sub-Poissonian process. Next, we infer the number and duration of the prominent sequential steps in transcription initiation by maximum likelihood estimation. Under full induction and at optimal temperature, we observe three major steps. We find that the kinetics of RNA production under the control of PtetA, including number and duration of the steps, varies with induction strength and temperature. The results are supported by a set of logical pairwise Kolmogorov-Smirnov tests. We conclude that the expression of TetA is controlled by a sequential mechanism that is robust, whereas sensitive to external signals.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3458540 | PMC |
http://dx.doi.org/10.1093/nar/gks583 | DOI Listing |
Langmuir
December 2024
Department of Mechanical Engineering, Rice University, Houston, Texas 77005, United States.
Patterned solid surfaces with wettability contrast can enhance liquid transport for applications such as electronics thermal management, self-cleaning, and anti-icing. However, prior work has not explored easy and scalable blade-cut masking to impart topography patterned wettability contrast on aluminum (Al), even though Al surfaces are widely used for thermal applications. Here, we demonstrate mask-enabled topography contrast patterning and quantify the resulting accuracy of the topographic pattern resolution, spatial variations in surface roughness, wettability, drop size distribution during dropwise condensation, and thermal emissivity of patterned Al surfaces.
View Article and Find Full Text PDFPathogens
July 2023
School of Veterinary Medicine, Texas Tech University, Amarillo, TX 79106, USA.
This study was carried out to determine the antimicrobial resistance (AMR) genes and mobile genetic elements of 16 isolates-with reduced susceptibility to ceftazidime and imipenem-that were recovered from the fecal samples of coyotes and wild hogs from West Texas, USA. Whole-genome sequencing data analyses revealed distinct isolates with a unique sequence type and serotype designation. Among 16 isolates, 4 isolates were multidrug resistant, and 5 isolates harbored at least 1 beta-lactamase gene (, , or ) that confers resistance to beta-lactam antimicrobials.
View Article and Find Full Text PDFNPJ Precis Oncol
July 2023
Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA.
Poly (ADP-ribose) Polymerase (PARP) inhibitors (PARPi) have been approved for both frontline and recurrent setting in ovarian cancer with homologous recombination (HR) repair deficiency. However, more than 40% of BRCA1/2-mutated ovarian cancer lack the initial response to PARPi treatment, and the majority of those that initially respond eventually develop resistance. Our previous study has demonstrated that increased expression of aldehyde dehydrogenase 1A1 (ALDH1A1) contributes to PARPi resistance in BRCA2-mutated ovarian cancer cells by enhancing microhomology-mediated end joining (MMEJ) but the mechanism remains unknown.
View Article and Find Full Text PDFRNA
August 2023
Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
Synthetic RNA oligonucleotides composed of canonical and modified ribonucleotides are highly effective for RNA antisense therapeutics and RNA-based genome engineering applications utilizing CRISPR-Cas9. Yet, synthesis of synthetic RNA using phosphoramidite chemistry is highly inefficient and expensive relative to DNA oligonucleotides, especially for relatively long RNA oligonucleotides. Thus, new biotechnologies are needed to significantly reduce costs, while increasing synthesis rates and yields of synthetic RNA.
View Article and Find Full Text PDFMetabolites
January 2023
The Blue Chemistry Lab, Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy.
In response to Iron deprivation and in specific environmental conditions, the cyanobacteria produce siderophores, iron-chelating molecules that in virtue of their interesting environmental and clinical applications, are recently gaining the interest of the pharmaceutical industry. Yields of siderophore recovery from in vitro producing cyanobacterial cultures are, unfortunately, very low and reach most of the times only analytical quantities. We here propose a four-step experimental pipeline for a rapid and inexpensive identification and optimization of growth parameters influencing, at the transcriptional level, siderophore production in .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!