Gas chromatographic determination of incurred dimetridazole residues in swine tissues.

J Assoc Off Anal Chem

Food and Drug Administration, Division of Chemistry, Rockville, MD 20857.

Published: February 1991

A gas chromatographic method for determination of 2-hydroxymethyl-1-methyl-5-nitroimidazole (DMZOH), the hydroxy metabolite of dimetridazole, in swime muscle has been developed. The method uses cleanup steps similar to those of an earlier polarographic method. The present method is capable of quantitating levels as low as 2 ppb and detecting less than 1 ppb. Recoveries from 30 control tissues spiked at 1, 2, or 4 ppb averaged 80.4%. Performance of the method in incurred tissue was documented and limited data on the depletion of the metabolite in muscle were generated. The muscle of swine given 150 ppm dimetridazole in feed for 14 days contained less than 1 ppb DMZOH at 12 h withdrawal time.

Download full-text PDF

Source

Publication Analysis

Top Keywords

gas chromatographic
8
method
5
chromatographic determination
4
determination incurred
4
incurred dimetridazole
4
dimetridazole residues
4
residues swine
4
swine tissues
4
tissues gas
4
chromatographic method
4

Similar Publications

Quantification of micro- and nano-plastics in atmospheric fine particles by pyrolysis-gas chromatography-mass spectrometry with chromatographic peak reconstruction.

J Hazard Mater

January 2025

State Key Laboratory of Advanced Environmental Technology, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou 510640, China.

The effects of micro- and nano-plastics (MNPs) on human health are of global concern because MNPs are ubiquitous, persistent, and potentially toxic, particularly when bound to atmospheric fine particles (PM). Traditional quantitative analysis of MNPs by pyrolysis-gas chromatography-mass spectrometry (Py-GC/MS) is often inaccurate because of false positive signals caused by similar polymers and organic compounds. In this study, a reliable analytical strategy combining HNO digestion and chromatographic peak reconstruction was developed to improve the precision of pyrolysis-gas chromatography-mass spectrometry analysis of multiple MNPs bound to PM.

View Article and Find Full Text PDF

is a genus of 98 species, widely distributed in western North America. This work presents a chemometric analysis of the essential oils of seven species of (, var. , , , , , and var.

View Article and Find Full Text PDF

Members of the genus are well known for their medicinal properties, which can be attributed to their essential oils. In this work, we have examined the leaf essential oils of five understudied species collected from various locations in western North America. The essential oils were obtained by hydrodistillation and analyzed by gas chromatographic methods, including enantioselective gas chromatography.

View Article and Find Full Text PDF

Achieving the adsorptive separation and chromatographic separation of industrially the important chemicals toluene and methylcyclohexane using the same material is a highly desirable goal. We have successfully accomplished this using a fluorinated macrocycle tetrafluoroterphen[3]arene (4FTP3), which was synthesized and used for gas chromatographic separation in our previous work. The macrocycle 4FTP3 permitted the adsorptive separation of toluene from a toluene/methylcyclohexane mixture (1:1, v/v) with a purity of 99.

View Article and Find Full Text PDF

Underlying Mechanisms of Chromatographic H/D, H/F, and Isomerism Effects in GC-MS.

Metabolites

January 2025

Institute of Toxicology, Core Unit Proteomics, Hannover Medical School, 30623 Hannover, Germany.

Charge-free gaseous molecules labeled with deuterium H (D) atoms elute earlier than their protium-analogs H (H) from most stationary GC phases. This effect is known as the chromatographic H/D isotope effect (IE) and can be calculated by dividing the retention times () of the protiated ( ) to those of the deuterated () analytes: IE = /. Analytes labeled with C, N or O have almost identical retention times and lack a chromatographic isotope effect.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!