Major components of foods and feeds are fat, protein, and carbohydrates. Fat and protein are determined by direct measurements that are interpreted as the quantity of the constituent. Carbohydrates are usually calculated by difference. For this calculation, values for moisture/solids, ash, and "fiber" are also needed. The readily available collaborative studies for the determination of these major components are reviewed in an attempt to assign precision parameters to validated methods of analysis. When a number of studies for the same analyte, in the same food, by the same method are available, it is seen that the precision parameters among laboratories (standard deviations, SR; relative standard deviations, RSDR) and the ISO maximum tolerable difference functions (repeatability value, r; reproducibility value, R) are not characterized by any conventional distribution. The precision data are best summarized as a median or average parameter and the interval containing the centermost 90% of reported values. Typically, the precision of methods of analysis can be expressed as a function of concentration only, independent of analyte, matrix, and method. The average RSDR value from each collaborative data set can then be used as the numerator in a ratio containing, as the denominator, the value calculated from the Horwitz equation: RSDR = 2 exp (1 - 0.5 log C) where C is the concentration as a decimal fraction. A series of ratios consistently above 1, and especially above 2, probably indicates that a method is unacceptable with respect to precision. By this criterion, only the protein (Kjeldahl) determination is unqualifiedly acceptable with a 90% interval for RSDR of 1 to 3% at C values above about 0.01 (1 g/100 g). Fat, moisture/solids, and ash are acceptable down to limiting concentrations in the region of 1 to 5 g/100 g, if a test portion large enough to provide at least 50 mg of weighable residue or volatiles is specified. Measurements of individual carbohydrates and fiber-related analytes have unexpectedly poor precisions among laboratories. The variability, although high, may still be suitable for nutrition labeling. Reliability of analyses for the control of labeling of the primary nutrients must be achieved through quality assurance programs that require strict adherence to the directions of empirical methods and the use of suitable reference materials for absolute methods.

Download full-text PDF

Source

Publication Analysis

Top Keywords

precision parameters
12
methods analysis
12
nutrition labeling
8
major components
8
fat protein
8
moisture/solids ash
8
standard deviations
8
precision
6
methods
5
parameters methods
4

Similar Publications

Applications of MR Finger printing derived T1 and T2 values in Adult brain: A Systematic review.

F1000Res

January 2025

Department of Medical Imaging Technology, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.

Introduction: Magnetic resonance imaging (MRI) is essential for brain imaging, but conventional methods rely on qualitative contrast, are time-intensive, and prone to variability. Magnetic resonance finger printing (MRF) addresses these limitations by enabling fast, simultaneous mapping of multiple tissue properties like T1, T2. Using dynamic acquisition parameters and a precomputed signal dictionary, MRF provides robust, qualitative maps, improving diagnostic precision and expanding clinical and research applications in brain imaging.

View Article and Find Full Text PDF

Introduction: Clinical trials are critical for drug development and patient care; however, they often need more efficient trial design and patient enrolment processes. This research explores integrating machine learning (ML) techniques to address these challenges. Specifically, the study investigates ML models for two critical aspects: (1) streamlining clinical trial design parameters (like the site of drug action, type of Interventional/Observational model, etc) and (2) optimizing patient/volunteer enrolment for trials through efficient classification techniques.

View Article and Find Full Text PDF

Background: Breast cancer (BC) is a common cancer among women worldwide, and although the use of neoadjuvant therapy (NAT) for BC has become more widespread, there is no standardized prediction of the efficacy of NAT for BC. This study aimed to evaluate the value of quantitative parameters of dual-layer detector spectral computed tomography (DLCT) in predicting whether BC patients can achieve pathological complete response (pCR) after NAT.

Methods: Patients who were first diagnosed with BC in Shandong Cancer Hospital and Institute and received only NAT before surgery were selected for participation in this study.

View Article and Find Full Text PDF

Background: With globalization, oculoplastic surgeons must understand the intricate morphological nuances of the periocular region across ethnicities to ensure precise treatment and avoid facial disharmony or dysfunction. Direct comparisons in two-dimensional (2D)-based periocular morphology between studies can be challenging due to the limited number of parameters and complicated variations in equipment, environments, measurement personnel, and methods. Therefore, it is imperative to explore the detailed three-dimensional (3D) periocular morphological disparities between young Caucasian and Chinese populations.

View Article and Find Full Text PDF

Background: Although F-prostate-specific membrane antigen-1007 (F-PSMA-1007) positron emission tomography/computed tomography (PET/CT) and multiparametric magnetic resonance imaging (mpMRI) are good predictors of prostate cancer (PCa) prognosis, their combined ability to predict prostate-specific antigen (PSA) persistence has not been thoroughly evaluated. In this study, we assessed whether clinical, mpMRI, and F-PSMA-1007 PET/CT characteristics could predict PSA persistence in patients with PCa treated with radical prostatectomy (RP).

Methods: This retrospective study involved consecutive patients diagnosed with PCa who underwent both preoperative mpMRI and PSMA PET/CT scans between April 2019 and June 2022.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!