Histone deacetylase inhibitors (HDI) have shown promise as candidate radiosensitizers for many types of cancers. However, the mechanisms of action are not well understood, and whether they could sensitize multiple myeloma (MM) to radiation therapy is unclear. In this study, we show that suberoylanilide hydroxamic acid (SAHA) at low concentrations has minimal cytotoxic effects, yet can significantly increase radiosensitivity of MM cells. SAHA seems to block RAD51 protein response to ionizing radiation, consistent with an inhibitory effect on the formation of RAD51 focus in irradiated MM cells. These effects of SAHA on RAD51 focus are independent of cell-cycle distribution changes. Furthermore, we show that SAHA selectively inhibits the homology-directed repair (HDR) pathway. The results of this study suggest that SAHA, a recently approved HDI in clinical trials for malignancies, at lower concentrations may act as a radiosensitizer via disruption of the RAD51-dependent HDR pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1158/1541-7786.MCR-11-0587DOI Listing

Publication Analysis

Top Keywords

suberoylanilide hydroxamic
8
hydroxamic acid
8
rad51 protein
8
homology-directed repair
8
multiple myeloma
8
rad51 focus
8
hdr pathway
8
saha
5
acid radiosensitizer
4
radiosensitizer modulation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!