A positional proteomics strategy for global N-proteome analysis is presented based on phospho tagging (PTAG) of internal peptides followed by depletion by titanium dioxide (TiO(2)) affinity chromatography. Therefore, N-terminal and lysine amino groups are initially completely dimethylated with formaldehyde at the protein level, after which the proteins are digested and the newly formed internal peptides modified with the PTAG reagent glyceraldhyde-3-phosphate in nearly perfect yields (> 99%). The resulting phosphopeptides are depleted through binding onto TiO(2), keeping exclusively a set of N-acetylated and/or N-dimethylated terminal peptides for analysis by liquid chromatography-tandem MS. Analysis of peptides derivatized with differentially labeled isotopic analogs of the PTAG reagent revealed a high depletion efficiency (> 95%). The method enabled identification of 753 unique N-terminal peptides (428 proteins) in N. meningitidis and 928 unique N-terminal peptides (572 proteins) in S. cerevisiae. These included verified neo-N termini from subcellular-relocalized membrane and mitochondrial proteins. The presented PTAG approach is therefore a novel, versatile, and robust method for mass spectrometry-based N-proteome analysis and identification of protease-generated cleavage products.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3434781PMC
http://dx.doi.org/10.1074/mcp.O112.018283DOI Listing

Publication Analysis

Top Keywords

n-terminal peptides
12
phospho tagging
8
tagging ptag
8
n-proteome analysis
8
internal peptides
8
ptag reagent
8
unique n-terminal
8
peptides
7
ptag
5
unbiased selective
4

Similar Publications

Background: Although anthracycline-related cardiotoxicity is widely studied, only a limited number of echocardiographic studies have assessed cardiac function in breast cancer survivors (BCSs) beyond ten years from anthracycline treatment, and the knowledge of long-term cardiorespiratory fitness (CRF) in this population is scarce. This study aimed to compare CRF assessed as peak oxygen uptake (V̇O), cardiac morphology and function, and cardiovascular (CV) risk factors between long-term BCSs treated with anthracyclines and controls with no history of cancer.

Methods: The CAUSE (Cardiovascular Survivors Exercise) trial included 140 BCSs recruited through the Cancer Registry of Norway, who were diagnosed with breast cancer stage II to III between 2008 and 2012 and had received treatment with epirubicin, and 69 similarly aged activity level-matched controls.

View Article and Find Full Text PDF

Background: Sodium-glucose cotransporter 2 inhibitors (SGLT2is) reportedly decreased the new-onset atrial arrhythmias in patients with type-2 diabetes (T2DM) or heart failure (HF). This study examined the impact of SGLT2is on catheter ablation for atrial fibrillation (AF) in HF patients without T2DM.

Methods: Persistent AF (PeAF) and HF (N-terminal prohormone of brain natriuretic peptide, NT-proBNP ≥400 pg/ml) patients without T2DM undergoing catheter ablation were prospectively enrolled (n = 102).

View Article and Find Full Text PDF

RAP1 is essential for PRRSV replication and the synthesis of the viral genome.

Vet Microbiol

December 2024

Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510462, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China. Electronic address:

Since its emergence, porcine reproductive and respiratory syndrome (PRRS) has caused enormous economic losses to the global swine industry. The pathogenesis of PRRS remains under investigation. The porcine reproductive and respiratory syndrome virus (PRRSV) causes reproductive disorders in pigs and respiratory in piglets, which is a 15 kb RNA virus that encodes 16 viral proteins, most of which exhibit multiple functions during the virus lifecycle.

View Article and Find Full Text PDF

Structural dynamics of a designed peptide pore under an external electric field.

Biophys Chem

December 2024

Theoretical Molecular Science Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Computational Biophysics Research Group, RIKEN Center for Computational Science, 7-1-26 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan; Laboratory for Biomolecular Function Simulation, RIKEN Center for Biosystems Dynamics Research, 1-6-5 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.

Membrane potential is essential in biological signaling and homeostasis maintained by voltage-sensitive membrane proteins. Molecular dynamics (MD) simulations incorporating membrane potentials have been extensively used to study the structures and functions of ion channels and protein pores. They can also be beneficial in designing and characterizing artificial ion channels and pores, which will guide further amino acid sequence optimization through comparison between the predicted models and experimental data.

View Article and Find Full Text PDF

Background: It is crucial to distinguish type-1 myocardial infarction (T1MI) from type-2 myocardial infarction (T2MI) at admission and during hospitalization to avoid unnecessary invasive exams and inappropriate admissions to the acute cardiac care unit.

Objectives: The purpose of the study was to define a simple profile derived from commonly used biomarkers to differentiate T1MI from T2MI.

Methods: We prospectively enrolled in an observational study 213 iconsecutive patients with a provisional diagnosis of non-ST-elevation acute myocardial infarction (NSTEMI) admitted to the Cardiology Department.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!