One pot synthesis of three structurally different Ni(II) thiosemicarbazone complexes 1, 2 and 3 were obtained from the reaction between [NiCl(2)(PPh(3))(2)], 1,2-bis(diphenylphosphino)ethane, and [H(2)-(Sal-tsc)]. The obtained products were characterized by various spectral and analytical techniques. From the X-ray crystallographic analysis, an unexpected N-arylation on the coordinated salicylaldehydethiosemicarbazone was found in complex 2. The comparative biological evolutions such as DNA/protein binding, antioxidant, cytotoxicity (MTT, LDH, and NO) and cellular uptake studies have been examined for [Ni(Sal-tsc)(PPh(3))] (1) and [(Ni(Sal-tsc))(2)(μ-dppe)] (3). When comparing the cytotoxicity of the complexes, 1 exhibited higher activity than 2 and 3 and by comparing with standard cis-platin, both of them were found to exhibit better activity under identical conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c2dt12231f | DOI Listing |
Chem Asian J
January 2025
Zunyi Medical University, School of Pharmacy, CHINA.
N-acyl/sulfonyl-α-phosphonated 1,2,3,4-tetrahydroiso-quinolines (THIQs) are highly important structural motifs in organic synthesis and drug discovery. However, the one-pot approach enabling direct difunctionalization of THIQs remains challenging. Herein we report a photomediated one-pot multicomponent cascade reaction to access N-acyl/sulfonyl-α-phosphonated THIQs via twice acyl/sulfonyl iminium.
View Article and Find Full Text PDFMikrochim Acta
January 2025
Cellular and Molecular Research Center, Cellular and Molecular Research Medicine Institute, Urmia University of Medical Sciences, 5714783734, Urmia, Iran.
Fe, Ni, and Cu doped ceria nanoparticles (CeNPs) were prepared with a simple and one-pot hydrothermal synthesis method. We investigated the chemiluminescence (CL) interaction between these NPs and rhodamine B (Rh B) and found that the highest CL intensity was related to the Rh B- Cu doped CeNPs. We assigned that to the higher catalytic property of Cu doped NPs compared to the others.
View Article and Find Full Text PDFJ Org Chem
January 2025
Department of Chemistry, Central University of Punjab, Bathinda 151401, India.
Visible-light-driven metal- and photocatalyst-free cascade 1,4-HAT and dearomative spirocyclization of -benzylacrylamides are described for sustainable synthesis of a variety of pharmaceutically important γ-ketoamides and 2-Azaspiro[4.5]decanes in one pot in good to excellent yields. Readily accessible and nontoxic materials, expensive Ir or Ru photocatalyst-free mild conditions, excellent functional group tolerance, operational simplicity, and scalability enhance the practical value of this protocol.
View Article and Find Full Text PDFSoft Matter
January 2025
Department of Mechanical Engineering and Materials Science, Yale University, New Haven, CT 06510, USA.
Hydrogels are popular platforms for cell encapsulation in biomedicine and tissue engineering due to their soft, porous structures, high water content, and excellent tunability. Recent studies highlight that the timing of network formation can be just as important as mechanical properties in influencing cell morphologies. Conventionally, time-dependent properties can be achieved through multi-step processes.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku Tokyo 125-8585, Japan.
Divergent synthesis of triazoles was achieved using newly designed platform molecules possessing azide, alkyne, and fluorosulfonyl moieties. Consecutive conjugations by the sulfur(VI) fluoride exchange and following consecutive triazole formations allowed us to prepare a wide variety of bis(triazole)s by virtue of selective transformations. One-pot triple-click assembly of easily accessible modules led to the facile synthesis of middle-molecular-weight triazoles with various functional moieties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!