Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Environmental contamination by TNT (2,4,6 trinitrotoluene), historically used in civilian industries and the military as an explosive is of great concern due to its toxicity. Scientific studies have however shown that TNT is susceptible to microbial transformation. The aim of this study was to assess the potential of a previously bioremediated hydrocarbon contaminated soil (PBR) to increase TNT degradation rates. This was investigated by adding TNT chips to PBR and uncontaminated soils (PNC) in laboratory based studies (up to 16 weeks). Residual TNT chip analysis showed greater TNT degradation in PBR soils (70%) and significantly higher metabolic rates (4.5 fold increase in cumulative CO(2) levels) than in PNC soils (30%). Molecular analysis (PCR-DGGE-cluster analysis) showed substantial shifts in soil microbial communities associated with TNT contamination between day 0 and week 4 especially in PBR soils. Bacterial communities appeared to be more sensitive to TNT contamination than fungal communities in both soils. Quantitative PCR analysis showed ~3 fold increase in the abundance of nitroreductase genes (pnrA) in PBR soils with a gradual reduction in community evenness (Pareto-Lorenz curves) in contrast to PNC soils. These results suggest that microbial response to TNT contamination was dependent on the history of soil use. The results also confirm that the microbial potential of waste soils such as PBR soil (usually disposed of via landfill) can be successfully used for accelerated TNT chip degradation. This promotes sustainable re-use of waste soils extending the life span of landfill sites.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2012.05.022 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!