The molecular mechanisms by which receptors regulate the Ras Binding Domains of the PIP3-generating, class I PI3Ks remain poorly understood, despite their importance in a range of biological settings, including tumorigenesis, activation of neutrophils by pro-inflammatory mediators, chemotaxis of Dictyostelium and cell growth in Drosophila. We provide evidence that G protein-coupled receptors (GPCRs) can stimulate PLCb2/b3 and diacylglycerol- dependent activation of the RasGEF, RasGRP4 in neutrophils. The genetic loss of RasGRP4 phenocopies knock-in of a Ras-insensitive version of PI3Kc in its effects on PI3Kc-dependent PIP3 accumulation, PKB activation, chemokinesis and reactive oxygen species (ROS) formation. These results establish a new mechanism by which GPCRs can stimulate Ras, and the broadly important principle that PLCs can control activation of class I PI3Ks.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3400018PMC
http://dx.doi.org/10.1038/emboj.2012.167DOI Listing

Publication Analysis

Top Keywords

rasgef rasgrp4
8
class pi3ks
8
gpcrs stimulate
8
gpcr activation
4
activation ras
4
ras pi3kc
4
pi3kc neutrophils
4
neutrophils depends
4
depends plcb2/b3
4
plcb2/b3 rasgef
4

Similar Publications

Diabetes mellitus (DM) is acknowledged as an independent risk factor for acute kidney injury. Ras guanine nucleotide-releasing protein-4 (RasGRP4) exerts a notable role in modulating immune-inflammatory responses and kidney disease progression in diabetes. Herein, we delved into the specific role and mechanism of RasGRP4 in diabetic renal ischemia-reperfusion injury.

View Article and Find Full Text PDF

Actuation of single downstream nodes in growth factor network steers immune cell migration.

Dev Cell

July 2023

Department of Cell Biology and Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA; Department of Biological Chemistry, School of Medicine, Johns Hopkins University, Baltimore, MD, USA. Electronic address:

Ras signaling is typically associated with cell growth, but not direct regulation of motility or polarity. By optogenetically targeting different nodes in the Ras/PI3K/Akt network in differentiated human HL-60 neutrophils, we abruptly altered protrusive activity, bypassing the chemoattractant receptor/G-protein network. First, global recruitment of active KRas4B/HRas isoforms or a RasGEF, RasGRP4, immediately increased spreading and random motility.

View Article and Find Full Text PDF

Background: Children born after assisted reproductive technologies (ART) differ in birthweight from those naturally conceived. It has been hypothesized that this might be explained by epigenetic mechanisms. We examined whether cord blood DNA methylation mediated the birthweight difference between 890 newborns conceived by ART (764 by fresh embryo transfer and 126 frozen thawed embryo transfer) and 983 naturally conceived newborns from the Norwegian Mother, Father, and Child Cohort Study (MoBa).

View Article and Find Full Text PDF

Background: Bladder cancer has the characteristics of high morbidity and mortality, and the prevalence of bladder cancer has been increasing in recent years. Immune and autophagy related genes play important roles in cancer, but there are few studies on their effects on the prognosis of bladder cancer patients.

Methods: Using gene expression data from the TCGA-BLCA database, we clustered bladder cancer samples into 6 immune-related and autophagy-related molecular subtypes with different prognostic outcomes based on 2208 immune-related and autophagy-related genes.

View Article and Find Full Text PDF

Ras guanine nucleotide-releasing protein-4 promotes renal inflammatory injury in type 2 diabetes mellitus.

Metabolism

June 2022

NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China. Electronic address:

Introduction: Ras guanine nucleotide-releasing protein-4 (RasGRP4) is an activator of Ras protein, which plays significant roles in both the inflammatory response and immune activation. This study determined the role of RasGRP4 in diabetic kidney disease (DKD) progression.

Methods: CRISPR/Cas9 technology was used to establish RasGRP4 knockout (KO) mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!